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Executive Summary 
The paper reports on two laboratory experiments that investigated the effects of price 
complexity on market outcomes. The experiments had human participants interact in basic 
markets. Across experiment sessions, the experiments varied how complex sellers were allowed 
to make their prices. In treatment 1, sellers could describe their price only using a single 
number. In treatment 2, sellers described their products using up to eight “sub-prices,” prices 
that added up to one total price. And, in treatment 3, sellers could use up to 16 sub-prices. 

1. Allowing more complex pricing led sellers to ask for higher total prices, on 
average. Comparing one price and 16 sub-price markets, average seller asks increased by more than 

60 percent. 

2. Allowing more complex pricing led buyers to make more mistakes, on average. 
Comparing one price and 16 sub-price markets, the frequency of buyer mistakes increased by more 

than 16 percentage points, or almost 1,400 percent. 

3. Allowing more complex pricing led to higher transaction prices, on average. 
Comparing one price and 16 sub-price markets, average prices increased by more than 70 percent. 

4. In markets with multiple sub-prices, sellers can compete for sales by increasing 
their price complexity to cause buyers to make mistakes. In markets with multiple 

sub-prices, standard equilibria apparently do not hold. Models fit using experiment data show that 

when one seller chooses a low price, the other seller, instead of choosing an even lower price, can 

profit most by choosing a higher price with high complexity. In contrast, in the one price treatment, 

sellers cannot increase complexity and therefore most of the standard equilibria hold. 

5. In a second experiment, increasing market competition generally improved, 
but did not eliminate, the negative effects of complexity. In markets with two sellers, 

average seller asks were about 64 percent higher in markets with more complexity. In markets with 

four sellers, average seller asks were only about 36 percent higher in more complex markets. In 

markets with two sellers, transaction prices were about 69 percent higher in markets with more 

complexity. In markets with four sellers, transaction prices were only about 38 percent higher in more 

complex markets. However, buyers made more mistakes in markets with more sellers. In markets 

with two sellers, buyers made mistakes about 9.9 percent of the time. In markets with four sellers, 

buyers made mistakes about 20.1 percent of the time. 
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1.  Introduction 
In the realm of consumer finance, consumers rarely face simple options. From frequent choices 
like how to pay for groceries, to the infrequent, like how to finance a home, consumers’ choices 
are multifaceted. How well consumers navigate these choices can have large financial 
consequences, and many financial choices have therefore been well-studied. This type of 
scholarship generally focuses on tangible costs and benefits—fees, interest rates, rewards, etc.—
and how well consumers navigate their choices given these costs and benefits. However, the 
complexity of financial decision-making itself, and the effects of complexity on consumers, are 
less often the direct object of study. 

In this paper, the Consumer Financial Protection Bureau’s (CFPB) Office of Research considers 
the effects of price complexity in a competitive market. We focus on a type of price complexity 
we call “dimensional complexity.” Dimensional complexity is a measure of the complexity 
consumers face when they consider the price of a single product. A product’s price has more 
dimensional complexity when its price is partitioned into multiple parts (e.g., as a mortgage has 
both upfront and interest costs) or if its use results in mandatory fees (e.g., as payment products 
such as checking accounts or prepaid cards may charge ATM or overdraft fees).1  

It can be difficult to measure how price complexity affects consumers using naturally occurring 
data. One reason for this is that price complexity often covaries with product complexity. For 
example, if a product has additional fees, then it typically also has additional features. This 
means that we cannot simply compare products with different levels of price complexity and 
hope to conclude that differences between consumer outcomes are due to price complexity 
alone—differences could also arise from the differences in products.2 

Another difficulty is that consumers typically buy products in the context of a broader 
marketplace. In markets, consumers and firms do not act in isolation—one consumer’s actions 
affect others’ outcomes, and their own outcomes are affected by the actions of other consumers 
and firms. For example, when a market has few sellers, then prices might be high, regardless of 

 
1 Of course, dimensional price complexity is but one type of complexity relevant to consumer choice. In section 2, we 

consider another type of price complexity we call “comparative complexity,” a market-level measure of the 
complexity consumers face when they compare prices across sellers. Complexity could also arise from other sources 
not considered in this report, including complexity of products themselves (e.g., products with many features or 
products with features that are difficult to comprehend, use, or compare). Other examples from the literature 
include lack of evaluability (Hsee and Zhang, 2010), price complexity from difficulty in evaluating different parts of 
a product’s price (Kalayci, 2016), or complexity from the need to trade-off between current and future costs or 
benefits (Chernev et. al, 2015). 

2 Moreover, consumers do not randomly choose products and therefore such an analysis could reflect selection bias. 
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the price complexity of the product. Conversely, if there are many sellers in a market, 
competition between sellers may result in low prices, even if the products’ prices are complex.  

In this paper, we report on two laboratory experiments that measure the effects of price 
complexity on consumers while attempting to account for the above difficulties. The laboratory 
allowed us to experimentally manipulate the dimensional complexity of products in simple 
markets in a way that would not have been possible in the real world.3 In addition, the 
laboratory setting allowed us to control features of the market that would have been otherwise 
hidden—for example, consumers in our studies received the same benefits from purchasing a 
product, regardless of the product’s price complexity. Finally, the lab allowed us to manipulate 
the number of sellers participating in markets to test how competition alters the effects of 
complexity. 

For these experiments, CFPB staff collected data at the Gettysburg Lab for Experimental 
Economics (GLEE) in three distinct experiments between 2015 and 2019.4 Both Experiment 1 
and Experiment 2 experimentally manipulated the maximum dimensional complexity of 
products in the marketplace.5 These experiments were identical except Experiment 2 clarified 
instructions and made improvements to participants’ user-interfaces. The results from these 
experiments are similar, and so, for concision, we do not report the results of Experiment 1. For 
ease of description, we call Experiment 2 the “Complexity Experiment.” In the next subsection, 
we describe related literature. Section 2 of this report describes this experiment. Subsections 
describe the theoretical model, experimental methodology, outcome measures and hypotheses, 
data, and experimental findings. Section 3 describes Experiment 3 which, in addition to 
manipulating price complexity, also experimentally manipulated the number of sellers operating 
in each market. For ease of description, we call this the “Competition Experiment.” Section 4 
offers concluding thoughts.  

 
3 Our experimental markets were modified versions of Bertrand Duopolies, two-seller markets in which sellers sell 

products that are identical except for their price, and sellers therefore compete for buyers through price alone. See 
section 2. 

4 Gettysburg College was awarded two separate contracts to complete this work under contract vehicle CFP-15D-
00004 (Task Orders 0001 and 0003). Contract award amounts included participant payments. See, 
https://www.usaspending.gov/award/CONT_AWD_CFP15D000040001_955F_CFP15D00004_955F and 
https://www.usaspending.gov/award/CONT_AWD_CFP15D000040003_955F_CFP15D00004_955F  

5 As described in detail in section 2, participants acting as sellers were able to choose the actual level of dimensional 
complexity of their prices. Nevertheless, sellers generally used the complexity available to them, as realized 
dimensional complexity was highly correlated with the experimentally manipulated maximum dimensional 
complexity. 

https://www.usaspending.gov/award/CONT_AWD_CFP15D000040001_955F_CFP15D00004_955F
https://www.usaspending.gov/award/CONT_AWD_CFP15D000040003_955F_CFP15D00004_955F
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1.1 Related Literature 
Carlin (2009) describes a model similar to the markets we explore in this paper. Although Carlin 
does not consider dimensional complexity directly, he conceives of a general price complexity 
and assumes that greater price complexity leads to a greater proportion of uninformed buyers. 
Implications of his model include: that greater price complexity leads to a greater frequency of 
buyer mistakes; that sellers who choose higher prices also choose greater price complexity; and 
that, in equilibrium, sellers will neither set prices equal to their marginal cost nor will they all 
set the same price (as in standard equilibrium characterizations of similar models). 

The paper closest to this report is Kalaycı (2015), who sets out to test certain assumptions and 
implications of Carlin’s model.6 Like Carlin, Kalaycı does not consider dimensional complexity 
explicitly, and so his notion of complexity mixes dimensional complexity with mathematical 
difficulty. Other important differences are that Kalaycı allows for dimensional complexity to 
vary only between one and three sub-prices. In this paper, we allow dimensional complexity to 
vary between one and 16 sub-prices, more closely matching the range of dimensional complexity 
found in consumer financial products in the field (although in some cases still falling well 
short!). Another important distinction is that we experimentally vary the maximum dimensional 
complexity in its markets, enabling causal inference about the effects of price complexity. 
Kalaycı finds that buyers are more likely to make mistakes when sellers choose complex prices, 
and he finds limited evidence that sellers who set higher prices are more likely to choose greater 
price complexity. 

This paper is related to several other literatures. Much has been written about “choice overload,” 
an umbrella term used to describe negative effects on consumer choice of consumers having 
many options. Recent meta-analyses suggest that the mean effect of choice overload could be 
zero (Scheibehenne et al., 2010), or that the existence of an effect depends highly on the context 
in which choice overload is tested (Chernev et al., 2015). Nevertheless, a more recent paper 
(Dean et al., 2022), states that the apparent inconclusiveness in the choice architecture 
literature is due to the fact that most tests of choice overload are under-powered, and suggests 
that choice overload may be much more prevalent than previously thought. 

In addition, our conception of dimensional complexity is similar to “partitioned pricing,” the 
practice of dividing a product’s total price into two or more mandatory sub-prices. A literature 
review of partitioned pricing literature shows the effects of partitioned pricing are varied and 
highly dependent on contextual and implementation details (Voester et al., 2016). Partitioned 
pricing can lead consumers towards more positive perceptions of products, greater purchase 

 
6 See also Kalaycı and Potters, 2011, and Kalaycı, 2016. 
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intentions, or greater willingness to pay, but these effects can be mitigated or even reversed 
depending on the details of implementation.7 Nevertheless, in a recent natural field experiment, 
Carpenter et al. (2021) show that consumers are more likely to choose dominated financial 
products when those products’ price disclosures are partitioned rather than consolidated.8 
White et al. (2023) replicate this result across a variety of product types. 

Several papers have demonstrated that, strategically, whether it is a profitable strategy for firms 
to obfuscate prices (as via complexity) depends on how consumers react to obfuscation. If 
consumers infer that only firms with something to hide would obfuscate, then consumers would 
not buy obfuscated products and obfuscation would not be a profitable strategy (e.g., Viscusi 
1978, Grossman 1981, Milgrom 1981). On the other hand, others have shown that if, for some 
reason, consumers do to make this inference, then obfuscation can be profitable (e.g., Carlin 
2009, Gabaix and Laibson 2006, Brown et al. 2012). Indeed, Jin et al. (2019) recently showed 
that even in a very simple controlled environment, consumers make systematic mistakes when 
assessing complex disclosures and therefore obfuscation can be a profitable strategy for firms. 

 
7 For a discussion of partitioned pricing literature in the context of hotel resort fees, see 

https://www.ftc.gov/system/files/documents/reports/economic-analysis-hotel-resort-
fees/p115503_hotel_resort_fees_economic_issues_paper.pdf  

8 A product is “dominated” if it is the same or worse than another product in every way and strictly worse in at least 
one way. 

https://www.ftc.gov/system/files/documents/reports/economic-analysis-hotel-resort-fees/p115503_hotel_resort_fees_economic_issues_paper.pdf
https://www.ftc.gov/system/files/documents/reports/economic-analysis-hotel-resort-fees/p115503_hotel_resort_fees_economic_issues_paper.pdf


7  

2.  Complexity Experiment 

2.1 The Model 
Participants in the Complexity Experiment interacted in simple markets in which two 
participants acted as sellers and competed to sell homogeneous products (that is, there were no 
differences between the sellers’ products) to two participants acting as buyers. Since the 
products were homogeneous, sellers could only differentiate their products via their prices. 
These markets therefore exhibited Bertrand competition (Bertrand, 1883). Since there are two 
sellers in these markets, they are also examples of Bertrand Duopoly.  

In classic economic modelling of Bertrand competition, each seller, or firm, sets its price to 
maximize profits. Since products offered by the two firms are homogeneous, buyers view both 
products as perfect substitutes, and therefore buy from the lower-priced seller. Sellers, 
competing for sales, set their prices equal to their marginal cost of production and make no 
profits. 

Sellers choosing prices equal to their marginal cost of production is a “Nash Equilibrium” of the 
Bertrand Duopoly model. A Nash Equilibrium is a set of strategies such that when all actors 
choose those strategies (and know others are playing them too), no single actor has an incentive 
to change their own strategy. Nash Equilibria are convenient for study because, in theory, 
behavior at Nash Equilibria is stable and predictable.  

When prices are continuous, as they often are in theoretical considerations of Bertrand Duopoly, 
there is only one symmetric Nash Equilibrium of a Bertrand Duopoly.9 When prices are discrete, 
as they are in these experiments, then there are two additional symmetric Nash Equilibria. 
Regardless, these other equilibria are very similar to the Nash Equilibrium described above as, 
in each of these equilibria, sellers choose prices just above their marginal cost of production.10  

 
9 A symmetric Nash Equilibrium is a Nash Equilibrium in which actors who have the same role (i.e., they have the 

same incentives, same set of possible actions, etc.) chose the same strategies. 

10 If we assume that when faced with two sellers with identical prices that buyers choose each seller with some 
positive probability, then, in addition to the equilibrium described above, it is a Nash Equilibrium for both sellers to 
set prices exactly one unit (e.g., one cent) higher than their marginal cost of production. In this equilibrium, sellers 
make small profits in expectation, and cannot undercut the other seller without losing these expected profits. If we 
further assume that when faced with two sellers with identical prices that buyers choose each seller with exactly 
50% probability, then it is also an equilibrium for both sellers to set prices exactly two units (e.g., two cents) higher 
than their marginal cost of production. In this equilibrium, sellers make small profits in expectation, and cannot 
increase their expected payoffs by undercutting the other seller. 
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We chose to study markets with Bertrand competition for several reasons. First, these markets 
have clear equilibrium predictions. Second, these markets use simple, homogeneous goods, and 
thus allow us to control product complexity. And finally, these markets are easily modified to 
include additional price complexity in a way that does not substantively alter their Nash 
Equilibria. 

2.2 The Experiment 
In this experiment, we administered three different versions of Bertrand Duopoly. The first 
version was the standard Bertrand Duopoly. In this version, participants were randomly 
assigned to markets for homogeneous “objects” in which two participants were randomly 
assigned to be sellers and two participants were randomly assigned to be buyers. “Tokens” were 
the medium of exchange and sellers could set prices anywhere from 0 to 800 tokens, in whole 
token denominations. To represent the utility of consumption, and to keep product complexity 
constant, buyers received a fixed amount of 800 tokens for purchasing any object.11 Sellers’ cost 
of producing an object (their “marginal cost of production”) was 100 tokens, and sellers only 
produced what they sold (that is, there was no risk of under- or over-production).  As described 
in the previous section, there are three symmetric Nash Equilibria of this game, all very similar 
to one another, and each entail that both sellers set their prices at, or just above, their marginal 
cost of production of 100 tokens.12 We call this version the “one price treatment.” 

The second version of the markets was identical to the first, but with one important difference. 
Rather than compete by setting a single price, sellers competed by setting eight “sub-prices.”13 
Sub-prices were prices that added up to the total price that buyers would pay—there was nothing 
significant about the sub-prices themselves.14 Buyers saw only sub-prices—the total price was 
not presented to them—but they could calculate the total price by summing the sub-prices. 

 
11 This also guaranteed that buyers had no chance of experiencing a loss in any round. 

12 The three symmetric Nash Equilibria are (1) both sellers set their prices at 100 tokens, (2) both sellers set their 
prices at 101 tokens, or (3) both sellers set their prices at 102 tokens.  

13 This is similar to the concept of “partitioned prices” found in other work. See, for example, Morwitz et al. (1998). 

14 Sellers could choose to either manually enter each of the eight sub-prices themselves, or they could start with a total 
price and press a button labeled “distribute” that randomly distributed the total price tokens amongst the sub-
prices. In either case, the sum of the sub-prices, the total price, was displayed to sellers and updated whenever they 
changed a sub-price. The distribute button is one of the innovations made after Experiment 1. In Experiment 1, we 
found that sellers spent a long time entering sub-prices, and so, in Experiment 2, we offered the distribute button to 
help sellers accomplish their task more quickly. The behavior of the distribute button was modeled from sub-price 
setting behavior from Experiment 1. That is, for a given total price, we attempted to match the variance amongst the 
sub-prices that we observed sellers using in Experiment 1. Use of the distribute button was not limited, and sellers 
could achieve new distributions of sub-prices by pressing the distribute button subsequent times. Moreover, if a 
seller used the distribute button, she could still edit the sub-price values manually.  
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Sellers were aware that buyers would see only sub-prices. Because this version of the game is 
substantively equivalent to the first, the Nash Equilibria are also substantively equivalent. The 
Nash Equilibria of this version of the game involves sellers choosing the same total prices as in 
the Nash Equilibria of the first version. We call this version the “eight sub-price treatment.” 

Finally, the third version of the markets was identical to the second, but with 16 sub-prices 
instead of eight. The Nash Equilibria of this version of the game are also substantively 
equivalent in that sellers choose the same total prices as in the Nash Equilibria of the other two 
versions of the game. We call this version the “16 sub-price treatment.” 

FIGURE 1  

Examples of buyers’ choice interfaces across treatments  

  
The first panel displays an example of a buyer’s choice in a market with one price. The second and third panels show examples in 

markets with eight and 16 sub-prices, respectively.  
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2.2.1 Data Collection 
CFPB staff collected data at the Gettysburg Lab for Experimental Economics (GLEE).15 
Participants interacted through private, networked computer terminals. The experiment was 
conducted across 18 “sessions.” Each session included 12 participants and individuals could 
participate in no more than one session each.  

Participants earned “tokens,” and at the end of each session, tokens were exchanged for 
dollars.16  

In each session, participants interacted in markets. Treatments (i.e., the one price treatment, the 
eight sub-price treatment, and the 16 sub-price treatment) were conducted within-subjects, 
meaning that all participants participated in all treatments.17 The order in which treatments 
were administered was randomized across sessions. 

Markets in each treatment were conducted over twelve “rounds.” In each round, each 
participant was randomly reassigned as either a buyer or seller and randomly reassigned to a 
new market with two total buyers and two total sellers.18 

After each round, players viewed a summary screen (Figure 2) that detailed: (1) their total 
benefits, costs, and net earnings; (2) both sellers’ total prices and sub-prices (if relevant); and 
(3) which seller each buyer purchased from. Thus, in addition to providing feedback on player’s 
choices, this screen showed buyers what they could have earned if they had selected the other 
seller and also allowed sellers to estimate the amounts they could have earned had they set 
prices differently (e.g., if they had set their prices lower than the other seller).  

 

 

 
15 For additional details about the Gettysburg College laboratory space, see Appendix A. For additional details about 

the experimental procedure, see Appendix B. 

16 Tokens were exchanged at a rate of 550 tokens per dollar. In addition, they were paid a fixed amount of $7 for 
attending the session. In total, participants earned about $30 total, on average. 

17 However, not all these data are used in the analysis. See the subsection Data Restrictions, below. 

18 This randomization of participants into new markets each round allows participants to accumulate experience in 
the task but without accumulating experience with the other players in their market. In contrast, studies that keep 
market participants the same across market iterations may wish to examine how repeated interactions between 
known market participants affects market outcomes. For example, Plott (1982) discusses experiments on Bertrand 
duopolies by Stoeker (1980) in which participants interacted as sellers in many markets and in which participants 
sold at relatively high prices, on average. 
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FIGURE 2  

An example of a seller’s summary screen  

 
In this example summary screen, the participant acted as a seller in a market in the one price treatment. The seller set their total 

price at 233 tokens, sold two objects, and made a profit of 266 total tokens. 



12  

2.3 Measures and Hypotheses 

2.3.1 Primary Outcome Measures 

Measures 
We focus the analysis on three outcome measures: (1) “seller asks,” the total prices set, or asked, 
by sellers; (2) “buyer mistakes,” whether buyers bought the product with the higher total price;19 
and (3) “transaction prices,” the total prices of products bought by buyers. We began the 
investigation with one broad hypothesis for each of these outcome measures.20 

Hypotheses 
Underlying each of the main hypotheses is the hypothesis that sellers will, on average, increase 
the complexity of their prices in treatments with more sub-prices. Measures of complexity and 
hypotheses surrounding measures of complexity are discussed in the next sub-section 
(Intermediate Outcome Measures). 

First, we hypothesized that buyers who participate in markets for products with more sub-prices 
would be more likely to make mistakes. This behavior would be consistent with the assumptions 
of Carlin (2009), the results of Kalaycı (2015), and previous literature in information overload in 
which consumers who face more cognitively demanding choices make worse choices, on average 
(e.g., Carpenter et al., 2021). This hypothesis is summarized in hypothesis H1, below: 

(H1) Buyers’ frequency of making mistakes will be positively correlated with the number of sub-
prices in a market. 

Next, we hypothesized that sellers would set higher total prices in markets with more sub-prices. 
One possible explanation for this behavior would be that sellers anticipate (or react to) the 
relationship between buyers’ mistakes and dimensional complexity hypothesized in H1 and thus 

 
19 Although it is possible that participants had preferences that could rationalize such choices—e.g., a preference for 

higher total prices, or a preference for giving other participants more money—we feel comfortable labeling these 
choices as “mistakes” given that they resulted in a loss of earnings for the participants who made them.  

20 Hypotheses 1-3 are predictions of correlations between outcomes and treatment. We did not have precise 
predictions about the magnitudes of the hypothesized effects nor how the magnitudes might vary across the domain 
of potential dimensional complexity (i.e., how magnitudes differed when the number of sub-prices increased from 
one to eight as compared when the number of sub-prices increased from eight to sixteen). In addition, although the 
dynamics of outcomes variables were not our primary concern, we hypothesized that each of the outcome variables 
would decrease as rounds progressed. That mistake frequencies would decrease is consistent with the observation 
that experiment participants typically improve at tasks with experience. That seller asks would decrease is 
consistent with other experimental evidence on Bertrand duopoly games (Fouraker and Siegel, 1963; Dufwenberg 
and Gneezy, 2000). We did not have hypotheses about how dynamics would be affected by treatment. 
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set prices higher in the hope of earning more via buyers’ mistakes. This hypothesis is 
summarized in hypothesis H2, below: 

(H2) Sellers’ asks will be positively correlated with the number of sub-prices in a market. 

Finally, we hypothesized that, because of the effects hypothesized in H1 and H2, the transaction 
prices for products with more sub-prices would be higher, on average. This hypothesis is 
summarized in hypothesis H3, below: 

(H3) Transaction prices will be positively correlated with the number of sub-prices in a market. 

2.3.2 Intermediate Outcome Measures 
We also tracked several “intermediate measures.” These variables are intermediate because they 
could plausibly be affected by treatment, and they could also themselves plausibly affect the 
primary outcome measures. 

The first intermediate variables measure realized price complexity in the experiment’s markets. 
To see why this is necessary, recall that treatment determines the maximum dimensional 
complexity of seller’s prices. In the actual markets, sellers set their own prices, and regardless of 
treatment status, it is possible that sellers choose prices that are not complex. For example, a 
seller could set most of their sub-prices to zero, making the task of adding and comparing prices 
simpler for buyers. In addition, features of markets may emerge (but not be the direct result of 
any one seller’s actions) that make the markets more or less complex. For example, if both 
sellers set most of their sub-prices to be the same as each other’s sub-prices, then comparing 
prices would be simpler for buyers. 

Comparative Complexity 
We borrowed from the field of Information Theory to quantify the complexity of information in 
a market. Following Lurie (2004), we used “Shannon entropy” (entropy) to measure the price 
complexity buyers face in a market when comparing prices across sellers.21 We calls this 
measure “comparative complexity” or, when discussing measures of entropy directly, 

 
21 Shannon entropy is a measure of the of uncertainty of a random variable. For any random variable X with support 
𝑆𝑆(𝑋𝑋) and probability mass function 𝑝𝑝(𝑥𝑥), the “self-information” of an event 𝑥𝑥 ∈ 𝑆𝑆(𝑋𝑋) is measured as 𝐼𝐼(𝑥𝑥) =
𝑙𝑙𝑙𝑙𝑙𝑙2 �

1
𝑝𝑝(𝑥𝑥)�. Self-information is sometimes also called the “surprisal” of x, a name that conveys that the more 

surprising, or less likely, x is, the greater is its value of self-information.  For the random variable X, Shannon 
entropy is the expected value of self-information: 𝐻𝐻(𝑋𝑋) = ∑ 𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙2 �

1
𝑝𝑝(𝑥𝑥)�𝑥𝑥∈𝑆𝑆(𝑥𝑥) .   
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“comparative entropy.”22  Entropy is measured in “bits,” with more bits corresponding to more 
complexity.23 For each price/sub-price in a market in the experiment, if the two products have 
the same value, then the entropy measure corresponding to that price/sub-price is zero bits. If 
the two products have different values for a sub-price, then the entropy measure corresponding 
to that price/sub-price is one bit. Thus, for the one price treatment, comparative entropy can 
range between zero bits when prices are the same and one bit when prices are different; for the 
eight sub-price treatment, comparative entropy can range between zero bits and eight bits; and 
for the 16 sub-price treatment, comparative entropy can range between zero bits and 16 bits.24  

Thus, (1) the more similar sellers’ sub-prices are, the lower will be the Shannon entropy,25 and 
(2) the more sub-prices there are, the greater the maximum possible Shannon entropy.26 
Shannon entropy is intuitive as a measure of comparative complexity because, intuitively, the 
more similar products are, the easier they are for buyers compare. Nevertheless, Shannon 
entropy does not encompass all intuition for what makes comparison simple or complex. For 
example, Shannon entropy has no notion of dominance, while a simple intuition is that if one 
seller’s sub-prices dominate another’s (i.e., their sub-prices are all the same or lower than the 
other seller’s) then this would be a very simple price comparison for buyers.  

Dimensional Complexity 
Next, we use Shannon entropy to measure what we call “dimensional complexity” or, when 
discussing measures of entropy directly, “dimensional entropy.”27 Whereas comparative 

 
22 Because we apply entropy to known prices in a market, our use of entropy is like others that quantify known 

proportions such as the Shannon diversity index: https://en.wikipedia.org/wiki/Diversity_index#Shannon_index  

23 Although other bases are possible, this formulation of Shannon entropy, which uses log base two, is common. 
Under this formulation, both self-information and Shannon entropy are measured in “bits.” Other bases correspond 
to different units. 

24 Below, we describe the Competition Experiment in which we conduct markets with up to four sellers. In these 
markets, the dynamics of comparative entropy are similar, with entropy for a single sub-price ranging from zero 
bits, if all sellers choose the same value; to two bits, if all sellers choose unique values. 

25 When self-information uses log base 2, as we specify here, self-information increases by one whenever the 
probability of an event decreases by half. Thus, if 𝑝𝑝(𝑥𝑥) = 1

2
, then 𝐼𝐼(𝑥𝑥) = 1; if 𝑝𝑝(𝑥𝑥) = 1

4
, then 𝐼𝐼(𝑥𝑥) = 2; and so on. 

Similarly, if an event occurs with certainty, then Shannon entropy achieve its minimum value of zero bits. 

26 Shannon entropy is maximized when there is a uniform likelihood of each possible event. A corollary of this is that 
random variables with more possible events also have a greater possible maximum entropy since, taking the 
uniform distribution over all events, each event becomes less likely. 

27 For dimensional entropy we made one change to the Shannon entropy formula, which was to exclude sub-prices set 
to zero from the calculation. We made this change to match our intuition that zeros do not increase complexity, and 
that the simplest possible price structure (under which the seller does not lose money) is to have one positive-valued 
sub-price with the remaining sub-prices set to zero. 

https://en.wikipedia.org/wiki/Diversity_index#Shannon_index
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complexity measures the complexity buyers face in a market when comparing prices across 
sellers, dimensional complexity measures the complexity of an individual seller’s sub-prices.28  

In the one price treatment, dimensional entropy is always zero bits because there is only a single 
price. In the eight sub-price treatment, dimensional entropy can range from zero bits (when a 
seller sets all of their sub-prices to be the same value or zero) to three bits (when a seller sets all 
of their sub-prices to be unique, non-zero values), and in the 16 sub-price treatment, 
dimensional entropy can range from zero bits to four bits.29 For example, in the eight sub-price 
treatment, if a seller wanted to ask for 360 tokens, they could achieve this through a variety of 
combinations of sub-prices. Some of these combinations would have high dimensional entropy, 
and some would have low dimensional entropy. If the seller set all their sub-prices to be 45 
tokens, then their dimensional entropy would be zero bits because all their sub-prices would 
have the same value. Similarly, if the seller set a single sub-price to be 360 tokens and set the 
remaining seven sub-prices to zero tokens, then their dimensional complexity would be zero bits 
because all their sub-prices would be the same value or zero. In contrast, if the seller set their 
sub-prices to be 10, 20, …, 80, then their dimensional entropy would be three bits (the 
maximum possible) because all their sub-prices would be unique values (no repeats) and not 
equal to zero.30 

Thus, (1) when sellers use few unique values for sub-prices, for example, by reusing values, or by 
setting sub-prices to zero, then this measure of Shannon entropy will be low, while if sellers use 
varied values, this measure of Shannon entropy will be high, and (2) the more sub-prices there 
are, the greater the maximum possible Shannon entropy. Shannon entropy is intuitive as a 
measure of dimensional complexity because, intuitively, the fewer unique values there are, the 
easier sub-prices are to sum-up and compare.  Again, however, Shannon entropy does not 
encompass all intuition for what makes a seller’s pricing structure simple. For example, 
Shannon entropy has no notion of round numbers, which, if used, would make adding sub-
prices simpler. 

 
28 To obtain a market-level measure of dimensional entropy, the sellers’ dimensional entropy measures are added 

together. 

29 Therefore, since there are two sellers in each market, the market-level measure of dimensional entropy ranges from 
zero bits to six bits in the eight sub-price treatment, and from zero bits to eight bits in the sixteen sub-price 
treatment. 

30 And thus, 𝐻𝐻(𝑋𝑋) = 8 ∗ 1
8

 𝑙𝑙𝑙𝑙𝑙𝑙2(8) = 3. The analog for the sixteen sub-price treatment is 𝐻𝐻(𝑋𝑋) = 16 ∗ 1
16

 𝑙𝑙𝑙𝑙𝑙𝑙2(16) = 4. 
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Seller Ask Spread 
Finally, we consider the difference between sellers’ total prices in each market, the “ask spread.” 
Researchers have long observed that the difference in options’ values affects their likelihood of 
being selected by decision-makers (Thurstone, 1927).31  

Hypotheses 
In this setting, we hypothesize that when ask spreads are low, buyers will have more difficulty in 
discerning which product is cheaper, and therefore buyers will be more likely to make mistakes. 
This would be consistent with Kalaycı (2015). 

Prior to collecting data, we did not anticipate collecting or using either comparative complexity 
or dimensional complexity in this analysis, and therefore we did not generate hypotheses for 
their effects prior to running the study. However, we believe the following hypotheses are 
intuitive: (1) both comparative complexity and dimensional complexity will be positively 
correlated with the number of sub-prices in a market, (2) buyers’ frequency of making mistakes 
will be positively correlated with both comparative complexity and dimensional complexity, and 
(3) sellers’ total asks will be positively correlated with dimensional complexity.  

2.4 Data 
Each session had 12 rounds per treatment and three total treatments, and so we recorded 36 
paid decisions per participant. Since there were 12 participants per session, this resulted in 432 
paid decisions per session; and since there were 18 sessions, 7,776 paid decisions in total across 
216 total participants.32 

2.4.1 Demographics 
After participants completed the main study, we asked them to complete a short survey. This 
survey contained items that we thought could plausibly correlate with participants’ behavior in 

 
31 This logic is present in standard models of discrete choice such as multinomial logit and multinomial probit models 

(McFadden, 2001). It is also present in more recent models such as the Drift Diffusion Model (Ratcliff, 1978), in 
which decision-makers are more likely to make mistakes when the difference in product values (the 
“discriminability”), decreases (Clithero, 2018). This logic is also present in certain equilibrium concepts such as 
Quantal Response Equilibria (McKelvey and Palfrey, 1995) in which (excepting the cases of extreme parameter 
values) the likelihood with which decision-makers take an action is a function of the differences between the 
action’s expected payoff and the expected payoffs of other actions (Goeree et al., 2016). 

32 Data from the first three sessions we ran were lost due to a software bug that made it impossible to download the 
data file at the end of the day. In addition, another session was canceled because too few people attended. 
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the experiment. On average, participants were about 20 years old and had completed nearly two 
laboratory experiments prior to this one.33 About 56 percent of our sample was female, and 
English was the second language for about seven percent of the sample. These percentages are 
about equal to the overall Gettysburg College undergrad student population around the time of 
the study.34 In addition, we measured participants’ subjective numeracy (Fagerlin et al., 2007), 
objective numeracy (Schwartz et al., 1997), and subjective perceptions of their own willingness 
to take risks (Dohmen et al., 2011).35 In all cases, average measures from our sample were 
greater than measures from the papers that generated the scales, reflecting differences between 
this and the other studies’ sampling frames. 

2.4.2 Data Restrictions 
Analysis of seller asks and transaction prices shows a strong interaction between treatment 
status and the order with which the treatments are presented to consumers. In short, there is a 
strong correlation between the asks/transaction prices in the final round of a preceding 
treatment and the asks/transaction prices in the first round of the following treatment. This 
significantly complicates the analysis of treatment effects, and therefore, in the following 
analyses of these outcome variables, we restrict the sample to data collected during the first 
treatment administered in each session. This restriction does not affect the qualitative results of 
this experiment, nor does it affect whether treatment status statistically significantly affects 
these outcome variables. For more information see Appendix C. 

 
33 Possible responses for the prior experimental experience question included: '0', '1 to 3', '4 to 6', '7 to 9', '10 or 

more']. To estimate an average response, we used the average of each category’s bounds. For the final category, we 
estimated 12 total experiments. 

34 About 52.6% of Gettysburg College undergraduates were female around the time of this study 
(https://www.usnews.com/best-colleges/gettysburg-college-3268/student-life, accessed 7/10/2017). About 6.4% of 
Gettysburg College undergraduates were international students around the time of the study 
(https://web.archive.org/web/20190909185050/https://www.gettysburg.edu/about-the-college/facts-
figures/student-body?catInode=102856b9-cf11-4f5b-bb5b-05b499f4522c)   

35 Subjective numeracy is a measure of a participant’s perception of their own ability to use, and preference for, 
numbers and probabilities. The scale we used is from Fagerlin et al. (2007) and consists of eight items on which 
participants rated their abilities or preferences on six-point scales. Objective numeracy is a measure of a 
participant’s actual ability to understand and use numbers and probabilities. The scale we used consists of three 
items and is adapted from Schwartz et al. (1997). While subjective numeracy and objective numeracy are related, 
they are not equivalent. For example, Peters et al. (2019) demonstrate that high subjective numeracy benefits those 
with high objective numeracy but harms those with low objective numeracy. The subjective measure of risk was a 
single question that asked, on a five-point scale, 'How willing are you to take risks in your life, in general?' This 
measure has been shown to correlate strongly with actual risky behavior (see Dohmen et al., 2011). 

https://www.usnews.com/best-colleges/gettysburg-college-3268/student-life
https://web.archive.org/web/20190909185050/https:/www.gettysburg.edu/about-the-college/facts-figures/student-body?catInode=102856b9-cf11-4f5b-bb5b-05b499f4522c
https://web.archive.org/web/20190909185050/https:/www.gettysburg.edu/about-the-college/facts-figures/student-body?catInode=102856b9-cf11-4f5b-bb5b-05b499f4522c
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2.5 Findings 
As hypothesized, increasing the number of prices/sub-prices in a market had large and 
statistically significant effects on all three of the outcome measures. Table 1 displays values for 
the three outcome measures, averaged across all markets, separated by treatment. Table 2 
reframes these data as changes from treatments with fewer sub-prices. The following sub-
sections explore these main effects in greater depth.36 

TABLE 1: MEAN OUTCOME MEASURES, BY TREATMENT 

 Number of prices/sub-prices 
 1 8 16 

Buyer mistakes, % 1.2 (0.3) 12.3 (0.9) 17.8 (1.1) 

Seller asks, tokens 180.8 (3.0) 266.1 (4.2) 292.5 (3.3) 

Transaction prices, tokens 159.4 (2.5) 236.4 (3.2) 271.9 (2.6) 

Parentheses contain standard errors. For seller asks and transaction prices, n=432 for each treatment. 
For buyer mistakes, observations in which seller asks are the same are dropped. Thus, n=1,210 for one price; n=1,240 
for eight sub-prices; and n=1,250 for 16 sub-prices. 

TABLE 2: INCREASES IN MEAN OUTCOME MEASURES, BY TREATMENT  

 Number of prices/sub-prices 
 1 to 8 8 to 16 1 to 16 

Buyer mistakes, % 11.1 (925%) 5.5 (45%) 16.6 (1383%) 

Seller asks, tokens 85.3 (47%) 26.4 (10%) 111.7 (62%) 

Transaction prices, tokens 77.0 (48%) 35.5 (15%) 112.5 (71%) 

Parentheses contain percent increases. 

 
36 Treatment coefficients and significance levels are qualitatively similar across a range of statistical tests.  The 

primary statistical challenge in analyzing these data is to model the data in a way that properly accounts for 
potential dependence between observations due to the facts that: (1) groups of individuals interacted repeatedly 
within a session; (2) within a session, markets within each treatment were repeated several times, and treatments 
were experienced in a sequence (creating the possibility of path-dependence); (3) each individual participated in 
many markets; and (4) multiple observations were drawn from each market (where, for example, buyers’ likelihood 
of making errors may be correlated due to seeing the same prices). The most conservative test that avoids problems 
due to observation dependence is to aggregate the data up to the session-level. Despite the restrictive constraints of 
this approach (n=18), estimated treatment effects are similar to those indicated by raw frequencies. We also used 
multi-level crossed-effects logit models to attempt to conduct analyses at the individual level while accounting for 
the several potential levels of observation dependence. These models also yield qualitatively similar results to the 
raw data and to the session-level analysis but at much greater levels of statistical significance. 
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2.5.1 Seller Asks 

Main Effects 
Consistent with hypothesis (H2), average seller asks increased by about 85 tokens (47%) 
between markets with only one price and with eight sub-prices, and by about 26.4 (10%) 
between markets with eight sub-prices and markets with 16 sub-prices. Comparing one price to 
16 sub-prices, average seller asks increased by more than 111 tokens, or by more than 60 
percent. Each of these differences are statistically significant.37  

Most of participants’ demographic characteristics were not strongly correlated with their asks 
when they played the seller role. Asks were not statistically significantly related to participants’ 
age, gender, or whether English was their first language. In contrast, on average, participants 
with high subjective numeracy (they perceived themselves to be better able to understand and 
use numbers and probabilities) set higher asks, on average (while objective numeracy was not 
statistically significantly related to seller asks).38 In addition, participants who rated their own 
willingness to take risks as high were more likely to choose higher asks.39 

The first panel of Figure 3 displays average seller asks as rounds of the game progressed, 
separated by treatment. The second panel presents the average low ask in each market, and the 
third panel presents the average high ask. Each measure is significantly lower for the one price 
treatment across all rounds, while the eight sub-price treatment is modestly lower than the 16 
sub-price treatment in nearly all rounds. Notably, all three measures were well above the Nash 
equilibria of the Bertrand Duopoly game (~100 tokens) in all treatments, even in the final 
rounds.40  

 
37 Aggregating data to the session level, using the eight sub-price treatment as the comparison group, the estimated 

effect of the one price treatment is a reduction in seller asks of about 74 tokens, or about 30 percent (p=0.007); and 
the estimated effect of the 16 sub-price treatment is an increase in seller asks of about 37 tokens, or about 15 percent 
(p=0.131). A multi-level crossed-effects logit model at the seller decision level (n=1,175), controlling for certain 
demographic and context variables, estimates the effect of the one price treatment is a reduction in seller asks of 
about 31 percent (p<0.001) compared to the 8 sub-price treatment; and the estimated effect of the 16 sub-price 
treatment is an increase in seller asks of about 20 percent (p=0.034) compared to the 8 sub-price treatment. 

38 Treating the measure of subjective numeracy as continuous and controlling for treatment status as well as certain 
context variables and several other demographic variables, a one-point increase in subjective numeracy was 
associated with an increase in average total ask of about 4.4 percent (p=0.093). 

39 Participants were asked to rate, on a scale from 1 to 5, “How willing are you to take risks in your life, in general?” 
Compared to participants who selected a neutral response of 3, a response of 4 is associated with an increase in 
average total ask of about 5.5 percent, and a response of “Very willing to take risks” (5 on the scale) is associated 
with an increase in average total ask of about 12.7 percent. 

40 In only two sessions, both one price treatments, did average seller asks come within ten tokens of Nash 
equilibrium. 
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FIGURE 3  

Seller asks across rounds 

 
A dashed horizontal line in each figure at 100 tokens is a symmetric Nash Equilibrium ask.  

Error bars show standard errors.  

Treatment appears to have affected seller asks in at least two ways. First, treatment caused a 
level shift in asks, which reflects sellers’ expectations for a successful strategy based only on 
what they know about the market’s structure (that is, treatment status). Considering only the 
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first round of each session, average asks were significantly higher in the 16 sub-price treatment 
and significantly lower in the one price treatment, compared to the eight sub-price treatment.41 

Second, treatment appears to have caused a change in the rate that sellers’ asks declined over 
rounds (that is, treatment caused a change in slope). Comparing average asks in the first round 
to average asks in the final round, seller asks decreased more in markets with fewer prices/sub-
prices.42 In addition, relative to sellers’ average asks in the preceding round, seller asks 
decreased more in markets with fewer sub-prices.43  

Intermediate Outcomes 
The first panel of Figure 4 shows how the dimensional entropy of sellers’ prices changed as 
rounds progressed. Recall that dimensional complexity is determined solely by each seller 
(rather than as an outcome of the market), and so these data represent averages of individual 
choices. Since there are two sellers in each market, each market will have one seller with a lower 
dimensional entropy and one seller with a higher dimensional entropy. The second panel 
presents the average lower dimensional entropy in each market, and the third panel presents the 
average higher dimensional entropy. For the one price treatment, dimensional entropy was fixed 
at zero for all sellers/prices. For the eight sub-price treatment, the maximum dimensional 
entropy for a single seller was three bits and for the 16 sub-price treatment, the maximum value 
was four bits. A maximum dimensional entropy value indicates that all of the seller’s sub-prices 
were unique values and greater than zero, while a value of zero bits was attained when either all 
of the seller’s sub-prices were the same or zero. For all three measures, the 16 sub-price 
treatment was generally higher than the eight sub-price treatment, which was much higher than 
the one price treatment. Average dimensional complexity was 2.7 bits in the eight sub-price 
treatment and 3.15 bits in the 16 sub-price treatment. For both the eight and 16 sub-price 
treatments, all three measures decreased slightly as rounds progressed, on average. 

 
41 A multi-level crossed-effects logit model at the seller decision level, controlling for certain demographic and context 

variables and limiting data to the first round (n=106), estimates the effect of the one price treatment is a reduction 
in seller asks of about 19 percent (p=0.011) compared to the 8 sub-price treatment; and the estimated effect of the 
16 sub-price treatment is an increase in seller asks of about 15 percent (p=0.075) compared to the 8 sub-price 
treatment. 

42 On average, seller asks decreased by about 100 tokens in the one price treatment, 84 tokens in the eight sub-price 
treatment, and 76 tokens in the 16 sub-price treatment. 

43 A multi-level crossed-effects logit model at the seller decision level (n=1,175), controlling for certain demographic 
and context variables, estimates that in the eight-price treatment, a one percent increase in the average ask in the 
preceding round leads to a 0.37% increase in average seller asks. In the one price treatment, this is reduced to about 
0.33 percent (p<0.001); and in the 16 sub-price treatment this increases to about 0.39 percent (p=0.04). 
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FIGURE 4  

Dimensional complexity across rounds 

 
Maximal entropy values for the eight and 16 sub-price treatments are indicated by horizontal dashed lines.  

Error bars show standard errors.  

Figure 5 shows how comparative complexity and dimensional complexity relate to treatment 
status for the eight and 16 sub-price treatments. Markets from the one price treatment are not 
depicted because all markets with one price have a dimensional entropy of zero bits and almost 
all have a comparative entropy of one bit. The figure shows that comparative entropy is 
concentrated near its maximal values in each treatment. This is not surprising given that 
markets and roles were re-randomized before each market—sellers would have had difficulty 
coordinating their sub-prices, even if they wanted to. As a result, comparative entropy is almost 
always higher in the 16 sub-price treatment. In addition, dimensional entropy is also mostly 
concentrated near its maximal values, but, in contrast, there were several markets with 
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dimensional entropy that was significantly lower than the maximum, indicating that some 
sellers made their prices simpler by repeating values or using zeros for their sub-prices. 

FIGURE 5  

Distributions of comparative entropy and dimensional entropy 

 
Each point in the interior of Figure 5 represents complexity measurements from a single market. At the top of the figure is an 
estimated density of dimensional entropy, separated by treatment. To the right of the figure is an estimated density of comparative 
entropy, separated by treatment. Both entropy measures are clustered near their maximal values in markets under treatments.  

A small amount of noise has been added to each point so that multiple points with the same values can be seen.  

Gray dashed lines depict the maximal values for the eight sub-price treatment.  

Figure 6 shows how individual sellers’ total asks relate to their dimensional complexity. These 
variables are both chosen by a single seller (unlike other variables that are determined at the 
market level), and so each datapoint reflects a decision of a single seller. Overall, there is a 
strong positive correlation between sellers’ total ask and the dimensional complexity of their 
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sub-prices.44 In other words, on average, sellers who chose higher asks also chose higher 
complexity. At the market level, these data lead to ask spreads (not shown) being positively 
correlated with dimensional complexity, on average. 

FIGURE 6  

Seller asks and dimensional complexity 

 

Each green circle represents one action of one seller. The solid lines use these data to predict ask totals based on dimensional 
entropy values. 

2.5.2 Buyer Mistakes 

Main Effects 
Consistent with hypothesis (H1), buyer mistakes increased in frequency from 1.2 percent of 
buyer decisions in markets with only one price, to 12.3 percent of buyer decisions in markets 

 
44 Correlation coefficients were 0.39 in the eight sub-prices treatment and 0.25 in the 16 sub-price treatment. 
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with eight sub-prices, to 17.8 percent of buyer-decisions in markets with 16 sub-prices.45 
Comparing one price to 16 sub-prices, the frequency of buyer mistakes increased by more than 
16 percentage points, or almost 1,400 percent. Each of these differences are statistically 
significant.46 

Participants’ demographics did not play a substantial role in their likelihood of making a 
mistake. Mistake likelihood was not statistically significantly related to participants’ age, gender, 
subjective numeracy, objective numeracy, or whether English was their first language.47  

In addition, it does not appear that buyers learned to avoid mistakes as the experiment 
progressed, as there was not a clear relationship between mistake rates and round number or 
the order in which the treatment was administered.48 Nevertheless, it is still possible that buyers 
learned in the experiment but that their learning was offset by the simultaneous learning of 
participants in the seller role. It could be, for example, that buyers and sellers learned at similar 
rates which resulted in buyers’ mistake rates appearing approximately static.  

Intermediate Outcomes 
Both dimensional complexity and comparative complexity were associated with more buyer 
mistakes. In addition, market ask spread was negatively correlated with buyer mistakes. That is, 
the closer sellers’ total asking prices were to each other, the more likely it was that buyers would 
make mistakes. Interestingly, these three intermediate variables appear to explain most of the 

 
45 Analyses of buyer mistakes exclude markets in which both sellers set the same total price (seller asks were the 

same) because it is impossible for buyers to a make mistake in such cases. 

46Aggregating data to the session level, using the eight sub-price treatment as the comparison group, the estimated 
effect of the one price treatment is a reduction in mistakes of about 10 percentage points (p=0.003); and the 
estimated effect of the 16 sub-price treatment is an increase in mistakes of about seven percentage points (p=0.014). 
A multi-level crossed-effects logit model at the buyer decision level (n=3,700), controlling for certain demographic 
and context variables, finds no variation at the session level. In addition, the estimated effect of the one price 
treatment is a reduction in mistakes of about 11 percentage points (p<0.0001); and the estimated effect of the 16 
sub-price treatment is an increase in mistakes of about 5 percentage points (p<0.0001). 

47 Compared to participants who selected a neutral response (3 on a scale from 1 to 5), participants who said they 
were “Not at all willing to take risks” (1 on a scale from 1 to 5) were about 11 percentage points more likely to make 
mistakes, on average, and participants who said they were “Very willing to take risks” (5 on a scale from 1 to 5), were 
about 5 percentage points more likely to make a mistake, on average. Nevertheless, very few participants selected 
these options. Only three of the 216 participants said they were “Not at all willing to take risks” and only 12 
participants said they were “Very willing to take risks.” 

48 In both the one price treatment and the eight sub-price treatment, there were no statistically significant 
relationships between buyers’ likelihood of making a mistake and either round number or the order in which the 
treatment was administered. In contrast, in the sixteen sub-price treatment, mistake rates increased at the rate of 
about 0.8 percentage points per round, on average, and mistakes rates were higher in the first and third treatment 
conditions, compared to the second. 
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statistical relationship between treatment and buyer-mistakes.49 In other words, it appears the 
reason that the number of sub-prices affected buyers’ mistakes is because more sub-prices 
allowed sellers to choose more complex price structures, and this caused buyers to make more 
mistakes, on average.50 

Figure 7 and Figure 8 visualize the effects of the intermediate variables on buyer mistake rates. 
Figure 7 presents a heatmap of buyers’ mistake rates, with higher rates of mistakes shown in 
orange and lower mistakes rates shown in blue. The figure shows that more dimensional 
complexity is associated with more buyer mistakes but that this relationship appears to be much 
stronger when ask spreads are small. In general, buyers are more likely to make mistakes when 
ask spreads are small and when dimensional entropy is large.51  

Figure 8 also presents a heatmap of buyers’ mistake rates but as a function of complexity. In 
both treatments, buyer mistakes appear to rise with each measure of complexity, and in general 
mistake rates are highest when both measures of complexity are high. Recall from the previous 
section that most markets had dimensional and comparative complexity levels near the 
maximum allowed, and thus most markets had combinations of these intermediate outcomes 
that are associated with elevated mistake rates.52  

 
49 Rubin (2004) demonstrates that, under certain circumstances, controlling for intermediate variables (outcomes 

that also depend on treatment) can lead to incorrect estimates. They note that this occurs when potential outcomes 
of the outcome variable (e.g., buyer mistakes) are dependent on potential outcomes of the intermediate variable 
(e.g., dimensional complexity) even after observing realized values of treatment and the intermediate variable. In 
this experiment, we assume such a relationship does not exist because sellers' actions determine intermediate 
variables while buyers' actions determine the outcome variable. Since, in a given market, buyers and sellers are 
different people, it is reasonable to assume the potential outcomes of these variables are independent. 

50 Controlling for intermediate market variables and certain time, context, and demographic fixed effects, no 
statistically significant relationship between treatment and buyer mistake rates remain. Note that the one price 
treatment is highly correlated with both entropy measures. All observations in this sample have a dimensional 
entropy of zero bits (by definition, since there is only one number in each price, the entropy score must be zero). In 
addition, all observations in this sample have a comparative entropy score of one bit (recall we restrict the sample in 
this analysis to observations in which total prices are not equal).  

51 In a logit regression, controlling for other intermediate variables, certain time, context, and demographic fixed 
effects, the average effect of a 10 token decrease in ask spread is a 1.9 percentage point increase in the likelihood of 
buyers making a mistake (p<0.001). The average effect of a one bit increase in dimensional entropy is a 1.5 
percentage point increase in the likelihood of buyers making a mistake (p<0.001). 

52 In a logit regression, controlling for other intermediate variables, certain time, context, and demographic fixed 
effects, the average effect of a of a one bit increase in comparative entropy is a 0.6 percentage point increase in the 
likelihood of buyers making a mistake (p=0.102). The average effect of a one bit increase in dimensional entropy is a 
1.5 percentage point increase in the likelihood of buyers making a mistake (p<0.001). 
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FIGURE 7  

Heatmaps of buyers’ mistake rates by ask spread and 
dimensional complexity 

 
Markets with spreads greater than 500 tokens are excluded to improve figure readability. 

Mistake rates are aggregated to the market level and binned with markets with similar ask spreads and total dimensional entropy. 

Markets from the one price treatment is not pictured because they each had a market dimensional entropy score of zero. 
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FIGURE 8  

Heatmaps of buyers’ mistake rates by comparative entropy and 
dimensional entropy 

 
Buyer mistake rates are aggregated to the market level and binned with markets with similar entropy measures. 

Markets from the one price treatment is not pictured because they each had a market dimensional entropy score of zero. 

2.5.3 Transaction Prices and Best Response 

Transaction Prices 
Consistent with hypothesis (H3), transaction prices increased by about 77 tokens (48%) between 
markets with only one price and markets with eight sub-prices, and by about 35.5 tokens (15%) 
between markets with eight sub-prices and markets with 16 sub-prices. Comparing one price 
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markets to 16 sub-price markets, average transaction prices increased by about 113 tokens, or by 
more than 70 percent. Each of these differences is statistically significant.53  

Figure 9 displays average transaction prices as rounds of the game progressed, separated by 
treatment. The data in this figure are only slightly higher than average market low asks (the data 
shown in second panel of Figure 3). This is natural, since in most cases, buyers chose the low ask 
in each market. On average, transaction prices did not reach the Nash Equilibria near 100 
tokens.54 

As with seller asks, treatment appears to have affected transaction prices in at least two ways. 
First, treatment caused a level shift in transaction prices—considering only the first round of 
each session, average market prices were significantly higher in the 16 sub-price treatment and 
significantly lower in the one price treatment than in the eight sub-price treatment.55 Second, 
treatment caused a change in the rate at which transaction prices declined. Comparing average 
transaction prices in the first round to average transaction prices in the final round, transaction 
prices decreased more in markets with one price than those with multiple sub-prices.56 

 
53 Aggregating data to the session level, using the eight sub-price treatment as the comparison group, the estimated 

effect of the one price treatment is a reduction in transaction prices of about 65 tokens, or about 30 percent 
(p=0.017); and the estimated effect of the 16 sub-price treatment is an increase in transaction prices of about 47 
tokens, or about 22 percent (p=0.069).  

54 In only two sessions did average transaction prices come within 10 tokens of the Nash equilibrium. Both were one 
price treatments. 

55 A multi-level crossed-effects logit model at the market level, controlling for certain context variables and limiting 
data to the first round (n=54), estimates the effect of the one price treatment is a reduction in transaction prices of 
about 19 percent (p=0.023) compared to the 8 sub-price treatment; and the estimated effect of the 16 sub-price 
treatment is an increase in transaction prices of about 24 percent (p=0.023) compared to the 8 sub-price treatment. 

56 On average, transaction prices decreased by about 78 tokens in the one price treatment and 62 tokens in the 
multiple sub-price treatments. 
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FIGURE 9  

Average transaction prices, across rounds 

 
The dashed horizontal line at 100 tokens is a symmetric Nash Equilibrium price.  

Error bars show standard errors. 

Best Response  
In the previous sections, we showed that, on average, complexity leads to more buyer mistakes, 
higher seller asks, and high transaction prices. Asks and transaction prices trend downwards as 
rounds progress, but, except in the one price treatment, never approach the Nash Equilibria. 
Why do prices and asks never reach Nash Equilibria in the multiple sub-price treatments? 
Alternatively, given that more complexity results in more mistakes, why do prices and 
complexity not trend upwards? 

To begin to address these questions, we fit a model of the likelihood that a buyer would buy from 
a seller, given the conditions of the market (e.g., both sellers’ asks, dimensional complexity, 
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comparative complexity, etc.) using data from the experiment.57 This allowed us to further 
estimate how sellers should respond to the other seller’s action, and to investigate whether 
adding complexity to the Bertrand Duopoly game, as we did in the experiment, changes the 
equilibria of the game. 

Figure 10 presents a directional field graph for each treatment. Each arrow in the graph depicts 
a seller’s “best response” if she knew what the other seller was going to do. The location of the 
base of an arrow represents the other seller’s chosen ask total (measured on the y-axis) and 
dimensional complexity (measured on the x-axis). The direction in which an arrow points 
represents the direction of the best response. That is, the arrow points in the direction of the ask 
total and dimensional complexity that the responding seller should choose to earn the most 
tokens, in expectation, given the model of buyer behavior. The length of an arrow represents, in 
relative terms, how far in the indicated direction the best response is from the first seller’s price 
and complexity.58 

In the graph, dots without arrowheads indicate an estimated symmetric equilibrium point: a 
point where both sellers play the same action and neither has an incentive to change. There are 
only two of these, each in the one price treatment, one at an ask total of 101 tokens and the other 
at 102 tokens. Each of these is also a symmetric Nash Equilibrium of the standard Bertrand 
Duopoly game. The third equilibrium of the standard game, when both sellers ask for 100 
tokens, is not an equilibrium in this model because at this price sellers make no profit, and 
therefore sellers would expect to earn more tokens by choosing a higher price and hoping a 
buyer makes a mistake. 

Similarly, in the multiple sub-price treatments, when the other seller’s total is near the Nash 
Equilibria of the Bertrand Duopoly game, the seller’s best response is to increase their total 
price and to make their prices highly complex. This contrasts with the logic of the Nash 
Equilibria in which sellers undercut each other until their asks are at, or very near, their 
marginal cost of production. However, there is a clear logic to the best response pattern—when 
the other seller’s price is low, there is very little profit to be gained by undercutting. Instead, a 
more profitable action is to set total price high and try to induce buyer mistakes through 
increased dimensional complexity.59 

 
57 This is a logit model like the model of buyer mistakes reported in the previous section. 

58 To be clear, arrows do not terminate at the seller’s best response. This design choice was made to help clarify the 
figure by reducing the number crossing arrows. 

59 These patterns have much in common with Carlin’s (2009) characterization of equilibrium in a similar setting. In 
Carlin’s setting, there can exist no equilibrium in which all sellers choose the same price (and thus excludes the 
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FIGURE 10  

Seller’s best responses given other seller’s action 

 
Each arrow in each graph depicts a seller’s “best response” if she knew the ask total and dimensional complexity of the other seller. 
In each panel, the base of an arrow is located at the known action of the other seller. The tip an arrow points in the direction of the 
responding seller’s best response, and the length of the arrow is proportional to the magnitude of the best response in that direction. 

 
symmetric Nash Equilibria of the standard Bertrand game). Instead, in equilibrium, sellers play a mixed strategy in 
which they choose prices according to a continuous price distribution with no mass points. In addition, in addition, 
in Carlin’s model, as in ours, sellers who choose higher prices also wish to induce mistakes by increasing 
complexity; and sellers who choose lower prices wish to minimize buyer mistakes by reducing complexity. 
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FIGURE 11  

Heatmap of a seller’s expected earnings  

 

Blue hexagons indicate low expected values, with deeper hues corresponding to lower expected values. Orange hexagons indicate 
high expected earnings, with deeper hues indicating higher expected earnings. The black x’s indicate the seller’s best responses, 
according to the model. 

Figure 11 explores a seller’s expected earnings when the other seller asks for 101 tokens and 
chooses zero bits of dimensional complexity. This is an interesting scenario to investigate 
because it is one of the Nash Equilibria of the standard Bertrand Duopoly game, and it remains 
an equilibrium of the model in the one price treatment. Both panels of Figure 11 depict 
heatmaps of a seller’s expected earnings for each of their possible actions. The first panel depicts 
expected earnings when objects have eight sub-prices, and the second panel, 16 sub-prices. Blue 
hexagons indicate lower expected values, with deeper hues corresponding to lower expected 
values. Orange hexagons indicate higher expected values, with deeper hues indicating greater 
expected values. Clearly, asks of 101 tokens are not a symmetric equilibrium of this game under 
either treatment as the seller has many options that she would expect to earn her more tokens.60 
The black x in each panel indicates the seller’s best response in that treatment, according to the 
model. In the eight sub-price treatment, her best response is to ask for 114 tokens and choose a 

 
60 This result is consistent regardless of the value of the other seller’s dimensional complexity. 
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dimensional complexity of 3 bits (the most possible). In the 16 sub-price treatment, the seller’s 
best response is to ask for 115 tokens and choose a dimensional complexity of 4 bits (also the 
most possible). 

In the multiple sub-price treatments, we did not find an equilibrium of the game, given the 
model. Instead, we found a cycle of best responses in which the best response to low prices and 
low complexity is higher prices and high complexity; and the best response to higher prices and 
higher complexity is lower prices and lower complexity; and so forth. These cycles can be seen in 
Figure 10.61 Thus, if the model is correct, the dynamics of best response in the multiple sub-price 
treatments guarantee that ask totals (and therefore transaction prices) will never converge to the 
low-priced Nash Equilibria of the standard duopoly game. On the other hand, the competitive 
pressures at higher prices also guarantee that prices and complexity will not trend forever 
upwards. 

 
61 To clarify, we did not find any pure strategy symmetric equilibria, given the model. In addition, we did not search 

for mixed strategy equilibria of the game, given the model. 
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3.  Competition Experiment 
In this section, we describe Experiment 3, which, for ease of description we calls the 
“Competition Experiment.” In addition to the manipulations conducted in the Competition 
Experiment, in this experiment, we also manipulated the competitive environment of markets.  

One of the difficulties of identifying the effect of complexity in a market setting is that attributes 
of, or the composition of, the market may moderate the effects of complexity. For example, if 
there are many firms in a market, each competing on price, then all consumers could benefit 
from lower prices, and it might appear that price complexity has little effect on market 
outcomes.  

The question we explore with this experiment is whether the amount of competition in a market 
ameliorates the negative effects of complexity we identified in the previous section. Previous 
work gives reason to be optimistic. For example, Dufwenberg and Gneezy (2000) found in single 
price markets that four-seller markets were more like to converge to the Nash Equilibrium than 
were markets with only two sellers. In addition, Kalayci (2016)62 conducted markets in which 
sellers could choose to complicate their prices and found that markets with more sellers 
generally had lower transaction prices.63 

Nevertheless, the results of this experiment were not a given. This experiment considers markets 
with greater potential dimensional complexity than any previous studies that we is aware of. In 
addition, increasing the number of sellers in a market also increases both the maximum possible 
comparative complexity and the maximum possible market-level dimensional complexity. In the 
Complexity Experiment, realized complexity caused buyers to make mistakes and sellers to 
increase asks. The question is thus whether the additional competitive forces introduced by 
more sellers will outweigh the effects of attendant increases in complexity. 

 
62 The way in which sellers could complicate prices in this experiment differs significantly from this experiment. 

Complications in Kalayci do potentially increase the dimensionality of object prices, but only by up to two 
dimensions. In addition, Kalayci’s prices have the added complication that prices have unequal weights in their 
contribution to a total price, a complication that would not be captured by our entropy measures. 

63 Fouraker and Siegel (1963) suggest that sellers are comprised of psychological types—that the Nash Equilibrium 
would be obtained if at least one seller in a market is a “simple maximizing” or “rivalistic” type, that Nash 
Equilibrium can only be avoided if all sellers are “cooperative bargainers,” and thus that the Nash Equilibrium is 
more likely to obtain in markets with more sellers because, as the number of sellers increases, so too does the 
likelihood that at least one of the sellers has a “simple maximizing” or “rivalistic” objective. On the other hand, Baye 
and Morgan (2004) demonstrate that markets with more sellers could be more likely to achieve lower prices, not 
because sellers have different motivations but because sellers have varying levels of rationality.  
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3.1 The Model and the Experiment 
This experiment is based on the same model as the Complexity Experiment. Since the markets 
occasionally have four sellers, they cannot be called duopolies, and instead we simply call them 
Bertrand markets. 

This experiment was the same as the Complexity Experiment but for two key differences.64 First, 
in addition to varying the number of sub-prices in a market, we also varied the number of sellers 
in a market. Second, we did not test any eight sub-price treatments. Together, these changes 
resulted in four treatments: two sellers, one price; two sellers, 16 sub-prices; four sellers, one 
price; and four sellers, 16 sub-prices.65 

3.2 Data 
This experiment included 16 sessions, resulting in 192 participants, 469 markets, and 2,248 
individual decisions. 

3.2.1 Data Restrictions 
As in the analysis of the Complexity Experiment, in our analysis of seller asks and transaction 
prices from this experiment, we find a strong interaction between treatment status and the order 
with which the treatments are presented to consumers. Therefore, in the following analyses, we 
restrict the sample to data collected during the first treatment administered in each session. 

The software we used for this experiment contained a bug wherein participants could manually 
adjust their sub-prices such that their ask total was not the same as the sum of their sub-prices 
(these should mechanically always be the same). Since buyers only saw sub-prices, this could 
result in buyers paying prices that did not match the sub-prices they saw. Of the 1,344 seller 
asks, 11 exhibited this inconsistency. These each occurred in unique markets, and we exclude 
data from these markets from the analyses. Of the 11 excluded markets, four resulted in a profit 
for the seller relative to what they would have made if their total price was consistent with the 

 
64 There was also one implementation difference, which was that the game was served to participants via the World 

Wide Web from CFPB’s servers rather than from the experimenter’s terminal at Gettysburg College. This change did 
not change participant’s experience. 

65 In addition, this experiment was only partially between-subjects, meaning we did not administer all treatments in 
all sessions. In each session, we conducted one session with one price and one session with 16 sub-prices. With this 
constraint, all plausible combinations number of sellers and number of prices were run and balanced across 
sessions. Regardless of this change, as in the analysis of Experiment 1, we are only considering data from the first 
treatment administered in each session. See the “Data Restrictions” sub-section for more information. 
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sum of their sub-prices. Each of these four instances occurred in a unique session, which means 
that no participant profited from this bug more than once. We conclude from these facts that no 
participant purposefully exploited the bug and thus we do not exclude any sessions from the 
analyses described in this report. When we do exclude all four sessions with any instances of 
profitable use of the bug, the results of the analyses do not qualitatively change. 

3.3 Measures and Hypotheses 

3.3.1 Primary Outcome Measures 
The three primary outcome measures for this study are the same as before: seller asks, buyer 
mistakes, and transaction prices. We maintain the three primary hypotheses from above (H1, 
H2, and H3). In addition, we add three regarding the effects of competition. 

We hypothesized that buyers would make more mistakes in markets with more sellers. Because 
markets with more sellers have potential both for greater dimensional complexity and greater 
comparative complexity, we expect that markets with more sellers will cause buyers to make 
more mistakes, on average.66 This would be consistent with the results from the Complexity 
Experiment. This hypothesis is summarized in H4, below: 

(H4) Buyers’ frequency of making mistakes will be positively correlated with the number of 
sellers in a market. 

Next, we hypothesized that in markets with one price, sellers would set lower total prices in 
markets with more sellers. This behavior would be consistent with previous experimental work 
such as Dufwenberg and Gneezy (2000). This hypothesis is summarized in H5, below: 

(H5) In markets with one price, sellers’ asks will be negatively correlated with the number of 
sellers in a market. 

Finally, we hypothesized that, because of the effect hypothesized in H5, that the transaction 
prices in markets with one price would be lower, on average, in markets with more sellers. This 
hypothesis is summarized in H6, below: 

 
66 This contrasts with the results of Kalayci (2016) who found no effect of the number of sellers on buyer mistakes. 

Nevertheless, there are several differences between our studies that could lead us to reach different conclusions. 
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(H6) In markets with one price, transaction prices will be negatively correlated with the 
number of sellers in a market. 

As discussed above, in 16 sub-price markets we were uncertain about how seller asks and 
transaction prices would correlate with the number of sellers. We therefore offered no 
hypotheses about the effects of additional sellers on asks or transaction prices in markets with 
16 sub-prices. 

3.4 Findings 

3.4.1 Seller Asks 
Average seller asks in each treatment are displayed in Table 3. Consistent with hypothesis (H5), 
average seller asks decreased by about 68 tokens (28%) when there were more sellers in one 
price markets. 

TABLE 3: MEAN SELLER ASKS, BY TREATMENT  

  One price 16 sub-prices Difference One price to 16  
sub-prices* 

Two Sellers 243.3 (6.3) 399.4 (9.7) + 156.1 (11.6) 
+ 104.3 (8.4) 

Four Sellers  175.4 (6.0) 238.8 (8.3) + 63.4 (10.2) 

Difference - 67.9 (8.7) -160.6 (12.8)   

Two to four 
sellers - 113.9 (8.4)  - 4.5 (10.4) 

Seller asks and differences are denominated in tokens. Parentheses contain standard errors.  

* Values are not simple averages of the preceding column due to imbalanced sample sizes. Since two-seller markets 

require fewer participants, we ran 50 percent more two-seller markets than four-seller markets. In contrast, four-

seller markets have 100 percent more sellers than two-seller markets. Therefore, on net, we have about 33 percent 

more ask data from two-seller markets than from four-seller markets (additional differences are due to unbalanced 

incidence of data restrictions). E.g., (1.33 * 63.4 + 1 * 156.1)/2.33 ≈ 104.3. 

We did not have clear hypotheses about how asks would change in the 16 sub-price markets—we 
predicted buyer errors would become more frequent which could lead sellers to choose higher 
asks, but that additional competitive pressure would likely encourage lower asks, and we were 
uncertain which force would be stronger. However, the results are clear: in markets with 16 sub-
prices, more sellers led to a large decrease, about 161 tokens (40%), in average seller asks.  
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We also replicated the result of the Complexity Experiment in that, consistent with hypothesis 
(H2), average seller asks increased with the number of sub-prices in a market. Seller asks 
increased by about 104 tokens (51%) from about 204 tokens in markets with only one price to 
about 308 tokens in markets with 16 sub-prices.67 Differences due to additional sellers and due 
to additional sub-prices are both statistically significant.68 

The effects of more sellers approximately offset the effects of more sub-prices, on average. The 
difference between average seller asks in markets with two sellers and one price and markets 
with four sellers and 16 sub-prices was only about 4.5 tokens, and this difference was not 
statistically significant different from zero.69 

The first panel of Figure 12 displays average seller asks as rounds of the game progressed, 
separated by treatment. The second panel presents the average low ask in each market, and the 
third panel presents the average high ask. Comparing treatments with the same number of 
prices/sub-prices (green lines for 16 sub-prices, blue lines for one price), average asks and 
average low asks are significantly lower for the four seller treatments across all rounds. 
Comparing treatments with the same number of sellers (darker lines for four sellers, lighter 
lines for two sellers), asks in one price treatments were consistently lower than asks in 16 sub-
price treatments.  Notably, both four seller treatments approached the Nash Equilibria of the 
standard Bertrand Duopoly game.70 

 
67 Comparing markets with two sellers to the results of the Complexity Experiment, average seller asks were higher in 

both the one price treatment (243 tokens compared to 181 in the Complexity Experiment) and the 16 sub-price 
treatment (399 tokens compared to 292 tokens in the Complexity Experiment). 

68 Aggregating data to the session level, the estimated effect of the 16 sub-price treatment is an increase in mean seller 
asks of about 77.2 percent (p=0.014) compared to the one price treatments and the estimated effect of the four-
seller treatment is a decrease in mean seller asks of about 24.5 percent (p=0.021) compared to two-seller 
treatments. A multi-level crossed-effects logit model at the seller decision level (n=1,141), controlling for certain 
demographic and context variables, estimates the effect of the estimated effect of the 16 sub-price treatment is an 
increase in mean seller asks of about 53.3 percent (p<0.001) compared to the one price treatment, and the 
estimated effect of the four-seller treatment is a decrease in mean seller mistakes of about 39.0 percent (p<0.001). 

69 In addition, from Table 3, the effect of additional sellers appears to stronger in markets with 16 sub-prices (-160.6 
tokens) than in markets with one price (-67.9 tokens). Similarly, the effect of additional sub-prices appears to be 
greater in markets with two sellers (+156.1 tokens) than in markets with four sellers (+63.4 tokens). However, these 
differences are not statistically significant: analysis at either the individual level or the session level shows an 
interaction between sub-prices and sellers is not statistically significant (p=0.26 and p=0.48, respectively). 

70 In the final five rounds, six sessions’ average low asks came within five tokens of the Nash equilibria of the standard 
Bertrand Duopoly game. Four were one price, four seller sessions; and two were 16 sub-price, four seller treatments. 
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FIGURE 12  

Seller asks across rounds 

 
A dashed horizontal line in each figure at 100 tokens is a symmetric Nash Equilibrium ask.  

Error bars show standard errors.  

3.4.2 Buyer Mistakes 
Mistake rates in each treatment are displayed in Table 4. Consistent with hypothesis (H4), buyer 
mistakes increased with the number of sellers in a market. Buyer mistakes increased by about 
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11.1 percentage points (103%) from about 9.9 percent of buyer decisions in markets with two 
sellers to about 20.1 percent of buyer decisions in markets four sellers.  

TABLE 4: MEAN BUYER MISTAKE RATES, BY TREATMENT  

  One price 16 sub-prices Difference (pp) One price to 16  
sub-prices (pp)* 

Two Sellers 5.6 (1.4) 14.4 (2.1) + 8.8 (2.5) 
+ 10.5 (2.5) 

Four Sellers  14.6 (2.6) 27.8 (3.3) + 13.2 (4.2) 

Difference (pp) + 9.0 (2.9) + 13.4 (4.0)     

Two to four 
sellers (pp) + 11.1 (2.5)   + 22.2 (2.5) 

Mistake rates are in percentages. Differences are in percentage points. Parentheses contain standard errors. 

* Values are not simple averages of the preceding column due to imbalanced sample sizes. Since two-seller markets 

require fewer participants, we have approximately 50 percent more buyer choices from two-seller markets than from 

four-seller markets (additional differences are due to unbalanced incidence of data restrictions).  

E.g., (1.5 * 8.8 + 13.2)/1 * 2.5 ≈ 10.5. 

We also replicated the result of the Complexity Experiment in that, consistent with hypothesis 
(H1), buyer mistakes increased with the number of sub-prices in a market.71 Buyer mistakes 
increased by about 10.5 percentage points (114%) from about 9.2 percent of buyer decisions in 
markets with only one price to about 19.7 percent of buyer decisions in markets with 16 sub-
prices.72 

The combined effect of increasing both the number of sellers and the number of sub-prices was 
to increase buyer mistakes by about 22 percentage points (300%) from 5.6 percent in markets 

 
71 Comparing markets with two sellers to the results of the Complexity Experiment, mistake rates were higher in the 

one price treatment (5.6% compared to 1.1% in the Complexity Experiment) and lower in the 16 sub-price treatment 
(14.6% compared to 17.8% in the Complexity Experiment). 

72 Unlike in the Complexity Experiment, the intermediate variables do not fully mediate the effect of treatment. In 
each specification of the model, treatment status (or treatment status separated into number of sellers and number 
of sub-prices), remains highly significantly related buyer mistake rates, even when controlling for the intermediate 
variables. This is true even if we restrict the analysis to two-seller markets. 
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with one price and two sellers to 27.8 percent in markets in four sellers and 16 sub-prices.73 
Each of these differences is statistically significant.74 

3.4.3 Transaction Prices 
Average transaction prices in each treatment are displayed in Table 5. Consistent with 
hypothesis (H6), in markets with one price, average transaction prices decreased by about 80 
tokens (39%) when there were more sellers. 

TABLE 5: MEAN TRANSACTION PRICE, BY TREATMENT  

  1 price 16 sub-prices Difference (pp) 1 to 16  
sub-prices (pp)* 

Two Sellers 205.7 (4.4) 348.4 (8.8) + 142.6 (9.8) 
+ 102.2 (8.0) 

Four Sellers  126.0 (3.5) 164.5 (5.9) + 38.4 (6.9) 

Difference (pp) - 79.7 (5.6) - 183.9 (10.6)   

Two to four 
sellers (pp) - 131.2 (6.7)  - 41.3 (7.4) 

Transaction prices are in tokens. Differences are in percentage points. Parentheses contain standard errors. 

* Values are not simple averages of the preceding column due to imbalanced sample sizes. Since two-seller markets 

require fewer participants, we have approximately 50 percent more transaction prices from two-seller markets than 

from four-seller markets (additional differences are due to unbalanced incidence of data restrictions).  

E.g., (1.5 * 142.6 + 1 * 38.4)/2.5 ≈ 102.2. 

As with seller asks, although we did not have clear hypotheses about how transaction prices 
would change in the 16 sub-price markets, the results are clear: in markets with 16 sub-prices, 
more sellers led to a large decrease of about 184 tokens (53%) in average transaction prices. 

 
73 From Table 4, the effect of additional sellers appears to be stronger in markets with 16 sub-prices (+ 13.4 

percentage points) than in markets with one price (+ 9.0 percentage points). Similarly, the effect of additional sub-
prices appears to be greater in markets with four sellers (+ 13.2 percentage points) than in markets with two sellers 
(+ 8.8 percentage points). However, these differences are not statistically significant: analysis at either the 
individual level or the session level shows an interaction between sub-prices and sellers is not statistically 
significant (p=0.60 and p=0.41, respectively). 

74Aggregating data to the session level, the estimated effect of the 16 sub-price treatment is an increase in mistakes of 
about 11 percentage points (p=0.001) and the estimated effect of the four-seller treatment is also an increase in 
mistakes of about 11 percentage points (p=0.001). A multi-level crossed-effects logit model at the buyer decision 
level (n=874), controlling for certain demographic and context variables, finds no statistically significant variation 
at the session level. In addition, the estimated effect of the 16 sub-price treatment is an increase in mistakes of about 
12 percentage points (p<0.001), and the estimated effect of the four-seller treatment is an increase in mistakes of 
about 15 percentage points (p<0.001). 
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We also replicated the result of the Complexity Experiment in that, consistent with hypothesis 
(H3), average transaction prices increased with the number of sub-prices in a market. Average 
transaction prices increased by about 102 tokens (60%) from about 174 tokens in markets with 
only one price to about 275 tokens in markets with 16 sub-prices.75 Differences due to additional 
sellers and due to addition sub-prices are both statistically significant.76 

The effects of more sellers approximately offset the effects of more sub-prices, on average. 
Average transaction prices decreased by about 41 tokens between markets with two sellers and 
one price and markets with four sellers and 16 sub-prices. The difference in average transaction 
prices between these sessions were not statistically significantly different from zero.77 

Figure 13 displays average transaction prices as rounds of the game progressed, separated by 
treatment. The data in this figure differ only slightly from the market low asks shown in second 
panel of Figure 12. This is natural, since in most cases buyers chose the low ask in each market. 
Average transaction prices in the one price four seller treatment approached Nash Equilibrium 
of standard Bertrand Duopoly model by about the 6th round. On average, transaction prices in 
the other treatments did not reach the Nash Equilibrium of 100 tokens.78 

 

 

 

 
75 Comparing markets with two sellers to the results of the Complexity Experiment, average transaction prices were 

higher in both the one price treatment (206 tokens compared to 160 in the Complexity Experiment) and the 16 sub-
price treatment (348 tokens compared to 272 tokens in the Complexity Experiment). 

76 Aggregating data to the session level (n=16), the estimated effect of the 16 sub-price treatment is an increase in 
mean transaction prices of about 43.6 percent (p=0.009) and the estimated effect of the four-seller treatment is a 
decrease in mean transaction prices of about 45.2 percentage (p<0.001). 

77 In addition, from Table 4, the effect of additional sellers appears to stronger in markets with 16 sub-prices (-183.9 
tokens) than in markets with one price (-79.7 tokens). Similarly, the effect of additional sub-prices appears to be 
greater in markets with two sellers (+142.6 tokens) than in markets with four sellers (+38.4 tokens). However, these 
differences are not statistically significant. Analysis at the session level shows an interaction between sub-prices and 
sellers is not statistically significant (p=0.20). 

78 In only two sessions with treatments other than one price, four sellers did average transaction prices over the final 
five rounds come within 10 tokens of the Nash equilibrium. Both were 16 sub-price, four seller treatment sessions. 
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FIGURE 13  

Average transaction prices across rounds 

 
The dashed horizontal line at 100 tokens is a symmetric Nash Equilibrium price.  

Error bars show standard errors. 
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4.  Conclusion 
In two experiments, the Consumer Financial Protection Bureau’s (CFPB) Office of Research  
considered a variation on the standard Bertrand Duopoly model. We varied the maximum 
possible amount of price complexity in a market by varying the number of sub-prices sellers 
used to describe their prices. We measured realized complexity via measures of “comparative 
complexity,” which quantified the dissimilarity between seller’s prices, and “dimensional 
complexity,” which quantified the dissimilarity within a single seller’s sub-prices. 

We find that price complexity is detrimental to consumers. On average, additional complexity 
(as measured by the maximum possible amount or by the realized amount) led sellers to set 
higher prices, increased the likelihood that consumers made mistakes, and increased 
transaction prices. 

Sellers in both experiments generally used most of the potential complexity available to them. In 
the first experiment (the “Complexity Experiment”), in the eight sub-price treatment, 
dimensional complexity averaged nearly 90 percent of its potential (2.7 of 3.0 bits), and in the 
16 sub-price treatment, dimensional complexity averaged nearly 80 percent of its potential (3.2 
of 4.0 bits). In addition, sellers who chose higher dimensional complexity also chose higher total 
prices (r=0.30), suggesting that sellers understood the effects of complexity on buyer decision-
making.  

Using data from the Complexity Experiment, we fit models of buyer and seller choice. We find 
that, in the one price treatment, the logic of the Bertrand Duopoly mostly still holds: generally, a 
seller’s best response is to slightly undercut the other seller’s price. As in the standard Bertrand 
Duopoly model, in our one price markets, it remains an equilibrium for both sellers to set their 
prices just above their marginal cost of production. In contrast, in the multiple sub-price 
markets, our model shows that the logic changes substantially near the equilibria of the 
standard Bertrand Duopoly game. When one seller’s ask is low, then the other seller’s best 
response is not to compete on price, but to increase their total price while also choosing a high 
dimensional complexity, anticipating that, in expectation, enough buyers will make mistakes to 
make this a more profitable strategy. 

These differences likely explain why our data generally show lower starting asks in the one price 
treatment as well as steeper ask declines as the experiment progresses across rounds. In 
addition, it is only in one price treatments that any session approaches the Nash Equilibria of 
the Bertrand game. 

In a second experiment (the “Competition Experiment”), we found that increasing market 
competition ameliorated, but did not eliminate, the negative effects of complexity. Doubling the 
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number of sellers in markets from two to four decreased average seller asks by about 36 percent, 
on average. These changes also had the effect of narrowing the difference in markets with more 
complexity compared to those with less. With two sellers, seller asks were about 64 percent 
higher in markets with more complexity. In contrast, with four sellers, seller asks were only 
about 36 percent higher in markets with more complexity. Clearly, complexity continued to 
affect seller asks, even in competitive markets, but its effects were substantially reduced. 

Buyer and seller dynamics are reflected in market transaction prices. In these experiments, 
transaction prices were higher in markets with greater complexity. In the Complexity 
Experiment, in markets with low competition, transaction prices increased by about 70 percent 
in the most complex markets compared to the least; and in markets with higher competition, 
transaction prices increased by about 30 percent in the most complex markets compared to the 
least. Thus, complexity remained detrimental to consumers even in competitive markets, but its 
effects were substantially reduced. 

Since transaction prices were paid by buyers to sellers, differences in transaction prices can be 
interpreted as transfers in economic well-being from buyers to sellers. For example, 
reinterpreting the results of the Complexity Experiment, average buyers were about 18 percent 
worse off in the most complex markets, while the average seller’s profits increased by almost 
200 percent. 

Part of the value of laboratory experiments is that we can simplify decision-making 
environments and focus on the elements most likely to answer our research questions. In these 
experiments, we created simple markets and manipulated the complexity of prices and the level 
of competition so that we could evaluate the effects of price complexity and competition on 
market outcomes. These are not questions that could be easily answered in the field, and so the 
laboratory was a useful tool. 

Nonetheless, prudence must be taken when generalizing results from laboratory experiments to 
the real world. The real world is, inevitably, more complicated. For example, price complexity in 
the real world rarely exists independently of product features; and considering features could 
affect consumers’ choices, and, therefore, alter the insights gained from these experiments. 

To be confident that laboratory results will generalize, more work must be done. Additional 
experiments can explore the robustness of laboratory results under different decision-making 
conditions, theoretical modeling can incorporate empirical insights and suggest new research 
questions, and, ultimately, field tests can reveal whether laboratory insights and theoretical 
predictions hold in real world environments. 
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APPENDIX A: THE GETTYSBURG COLLEGE LAB 

The Gettysburg Lab for Experimental Economics (GLEE) space is a computer lab containing 27 
networked computer terminals, each separated by physical dividers that prevent participants 
from viewing other participants’ computer monitors.79 The lab has large television monitors at 
the front of the room which can be seen clearly from all computer terminals and can be used to 
display instructions or other public information. Experimenters can observe and control 
experiments from an adjacent room that contains additional computer terminals and an 
observation window into the computer lab. A second adjacent room contains lockers for 
participants’ personal belongings and serves as both an entry and exit to the lab for participants. 

The software for the Complexity Experiment and the Competition Experiment was created using 
oTree version 1.2.5, a software platform built atop tools for designing webpages.80 The 
Complexity Experiment was served by a computer in the observation room, while the 
Competition Experiment was served from CFPB via the internet. Participant’s terminals ran 
Microsoft Windows and accessed the experiment via the Google Chrome web-browser.  

 

 
79 Further information about GLEE can be found on the GLEE website: https://www.gettysburg.edu/academic-

programs/economics/glee/  

80 See https://otree.readthedocs.io/en/latest/index.html  

https://www.gettysburg.edu/academic-programs/economics/glee/
https://www.gettysburg.edu/academic-programs/economics/glee/
https://otree.readthedocs.io/en/latest/index.html
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APPENDIX B: THE EXPERIMENTAL PROCEDURE 

Sessions of each of the experiments proceeded in essentially the same way. Prior to participants’ 
arrival, experimenters logged-in to the terminals, navigated the web-browser to the 
experiment’s URL, and then entered the browser into full-screen mode to hide the computer’s 
navigation interfaces (e.g., the start menu and the task bar) as well as the browser’s navigation 
and menu interfaces (e.g., the address bar and the back button). When participants arrived, they 
were instructed to not attempt to leave the browser window or to attempt to navigate away from 
the experiment’s webpage. Because the experiment was managed by a central server, if a 
participant did somehow manage to navigate away from the experiment’s URL, then 
experimenters could return the participant to the appropriate part of the experiment simply by 
navigating the participant’s browser back to the experiment’s URL. 

When participants arrived through the room with the lockers (see Appendix A), they were asked 
by an experimenter to sign Gettysburg College’s informed consent document.81 They were then 
assigned a locker where they were asked to put all their personal items, including their mobile 
phones. Participants were then seated at a computer terminal. To ensure privacy, we left vacant 
every other computer terminal. In addition, to prevent attempts to communicate between 
participants, participants who arrived together were placed far apart from each other in the lab. 
As participants were seated, the monitors at the front of the lab displayed instructions asking 
participants to sit quietly and await further instructions.  

Once participants were seated, an experimenter explained that experiment instructions and all 
interactions would take place via their computers, asked participants to raise their hands if they 
had questions during the experiment, and then explained the procedure for how participants 
would be paid and dismissed at the end of the experiment. The experimenter then answered 
participant questions and began the experiment.  

All questions raised before or during the experiment were answered by the experimenter. 
Clarifying questions were answered for all to hear so that all participants had the same 
information. 

Participants read instructions at their own pace. The instructions included several interactive 
“quiz” questions to ensure participants comprehended the instructions. Regardless of their 
responses to these questions, participants received feedback about which answer was correct 
and why. 

 
81 CFPB’s privacy statement was also provided but as part of the game’s instructions. 
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After the initial instructions were completed, instructions were provided about the specifics of 
the first treatment, these were followed by two unpaid practice rounds of the treatment-specific 
game, and these were followed by 12 paid rounds of the game. This process was then repeated 
for the remaining two treatment arms. 

On each non-instruction experiment screen, participants saw a timer that counted down from 
60 seconds. It was explained to participants that the timer had no direct effects and that nothing 
would happen if it reached zero. Nevertheless, participants were asked to make their choices 
approximately within the sixty seconds displayed by the timer.82 

After all rounds for all treatments were complete, participants completed a survey comprised of 
psychometric scales and demographic questions. Finally, after participants completed the 
survey, experimenters called participants one-by-one to the adjacent monitoring room, where 
they were paid their earnings in cash, in private. Participants were provided with a simple word 
search game to play while they awaited their turn to be paid. 

 

 
82 The timer was implemented after pilot tests revealed that a small proportion of participants took up to several 

minutes with each choice. This behavior was not observed again after the timer and instructions asking for timely 
decision-making were implemented.   
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APPENDIX C: TREATMENT BLOCKS 

This appendix discusses the evidence for removing treatment blocks after the first. Data 
presented in this Appendix are from the Complexity Experiment. 

In the second treatment block, first round asks were highly correlated with final asks of 
preceding treatment. In treatment blocks after the first, this had the effect of increasing one 
price treatment prices relative to the others and decreasing 16 sub-price treatments relative to 
the others. Table 6 presents average seller asks in the first round of the second treatment block. 
Average asks are higher in the one price treatment when it is preceded by 16 sub-prices than 
when it is preceded by eight sub-prices. Similarly, average asks are lower in the 16 sub-price 
treatment when it is preceded by the one price treatment than when it is preceded by the eight 
sub-price treatment. Both differences are statistically significant at the five percent level. There 
is not statistically significant difference between eight sub-price treatments by which other 
treatment preceded it.83 

TABLE 6: AVERAGE FIRST ROUND SELLER ASKS IN THE SECOND BLOCK, BY PRECEDING TREATMENT 

 Treatment 
Preceding Treatment One Price 8 sub-prices 16 sub-prices 

One Price -- 236.4 (25.8) 259.2 (28.7) 

8 sub-prices 220.1 (10.9) -- 342.4 (24.8) 

16 sub-prices 267.9 (15.7) 221.5 (9.1)  -- 

Average asks are in tokens. Parentheses contain standard errors. 

Figure 14 show average asks in each of the 18 sessions we ran across all treatment blocks and 
rounds. As can be seen, average asks in the final round of a preceding treatment block are strong 
predictors of average asks in the first round of the next treatment block. It also appears that 
discrete jumps upward may occur between treatment blocks when a more complex treatment 
follows a less complex treatment. 

  

 
83 T-tests, two-sided, unequal variance. One price, p=0.021; 8 sub-prices: p=0.5913; 16 sub-prices: p=0.035. 
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FIGURE 14  

Average seller asks by session 

 

Error bars show standard errors. 
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