Landlords as Lenders of Last Resort: Late Housing Payments and Unemployment

Nathaniel Pattison

Southern Methodist University

Motivation

- Households facing income shocks can postpone housing payments
 - Roughly 18% of renters and 10% of owners are late (Feb 2021)
- Active policy area
 - Eviction reforms
 - Covid-19 eviction moratoria
 - Proposed bankruptcy reform
- This paper: Late housing payments and safety net
 - Job loss
 - Pre-pandemic period

Housing and Income Shocks

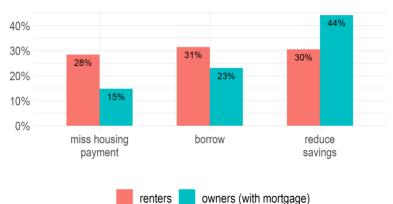
- Households cut expenditure in response to shocks
- Housing payments are households' largest expenditure
 - 35% of household income
 - Share is increasing
- Housing is difficult to adjust Chetty and Szeidl 2007
 - Moving is costly
 - Only adjust flexible, non-housing goods
 - Magnifies welfare costs

Housing and Income Shocks

- Households cut expenditure in response to shocks
- Housing payments are households' largest expenditure
 - 35% of household income
 - Share is increasing
- Housing is difficult to adjust Chetty and Szeidl 2007
 - Moving is costly
 - Only adjust flexible, non-housing goods
 - Magnifies welfare costs
- Housing expenditure is easier to adjust
 - Late housing payments provide informal credit

What I Do

- Part 1: Document late housing payments around job loss
- Part 2: Use model to quantify value of late payments


Institutional Background

- Eviction and foreclosure take time and money
 - Eviction: 2+ months
 - Foreclosure: 9 months to 3 years
- Delinquencies are often resolved
 - 92% of late renters did not report an eviction (SIPP)
 - 70% of 120+dpd mortgages cure/modify within 2 years
- Late payments as a source of credit
 - Landlords and lenders often "work with them" Balzarini and Boyd 2020
 - Households accrue back rent

Data

- RAND American Life Panel Financial Crisis Surveys (2008-2016)
 - Monthly panel of 2,500 to 6,000 respondents
 - Expenditure across 25 categories
 - Late payments, employment, moves, evictions
- Survey of Income and Program Participation (1991-2008)
 - Repeated cross-sections of up to 40,000 households
 - Missed rent/mortgage in last 12 months?
- Survey data vs. financial/bank account data
 - 80% of renters pay rent in cash, check, or money order Zhang 2016
 - 35% of late unemp. households report no assets in financial accounts

Frequency: RAND ALP (2008-2015)

How did you adjust to the loss of income from unemployment? (ALP respondents with recent job loss, N = 1,833 household-months)

Outline

Empirical Strategy and Results

Value of Late Payments Simple Model Quantitative Model

- How much does housing expenditure fall upon job loss?
 - Conditional on remaining in the same residence
- Changes in months around job loss Cochrane 1991, Gruber 1997

$$\Delta y_{it} = \beta_0 + \beta_1 Unemp_{it} + X_{it}\gamma + \tau_t + \epsilon_{it}$$

- changes in spending, normalized by pre-unemp. income
- indicator for unemployment
- cubic in age and indicator for ownership

- How much does housing expenditure fall upon job loss?
 - Conditional on remaining in the same residence
- Changes in months around job loss Cochrane 1991, Gruber 1997

 $\Delta y_{it} = \beta_0 + \beta_1 Unemp_{it} + X_{it}\gamma + \tau_t + \epsilon_{it}$

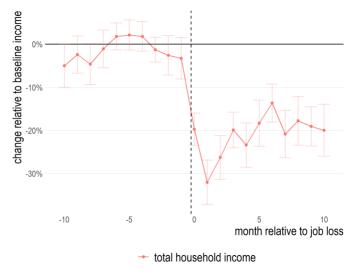
- changes in spending, normalized by pre-unemp. income
- indicator for unemployment
- cubic in age and indicator for ownership

- How much does housing expenditure fall upon job loss?
 - Conditional on remaining in the same residence
- Changes in months around job loss Cochrane 1991, Gruber 1997

$$\Delta y_{it} = \beta_0 + \beta_1 Unemp_{it} + X_{it}\gamma + \tau_t + \epsilon_{it}$$

- changes in spending, normalized by pre-unemp. income
- indicator for unemployment
- cubic in age and indicator for ownership

- How much does housing expenditure fall upon job loss?
 - Conditional on remaining in the same residence
- Changes in months around job loss Cochrane 1991, Gruber 1997

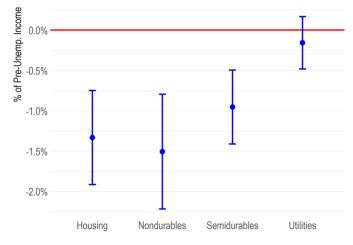

$$\Delta y_{it} = \beta_0 + \beta_1 Unemp_{it} + X_{it}\gamma + \tau_t + \epsilon_{it}$$

- changes in spending, normalized by pre-unemp. income
- indicator for unemployment
- cubic in age and indicator for ownership

Sample

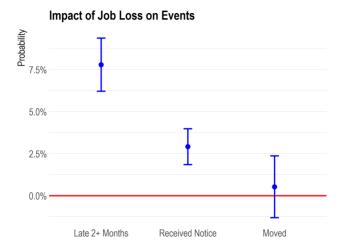
- Sample: ALP respondent *i* in month *t*, restricted to
 - Employed in prior six months
 - No moves in t = t 6, ..., t + 2
 - 28,043 hh-month observations, 260 job losses
- Outcome is spending change, conditional on not moving
- Outcome is only observed for non-movers
 - Selection issue if moving is non-random
 - Robustness: Assume movers would have paid full rent ($\Delta y_{it} = 0$) link

Income around Unemployment

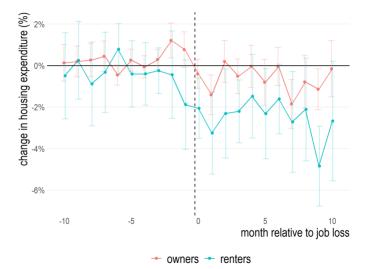

ALP renters and mortgagors with no reported moves in $t = t - 6, \ldots, t + 2$

Change in Spending around Unemployment

goods


Change in Spending around Unemployment

Decline in Spending Upon Job Loss


ALP renters and mortgagors with no reported moves in $t = -6, \ldots, 2$. Table

Late Payments and Moving

ALP renters and mortgagors with no reported moves in t = -6, ..., 2. Includes indicator for pre-unemp. late payments.

Housing Expenditure: Owners vs. Renters

Empirical Results

- Late housing payments are a common response to job loss
- More than 20% of renters, 10% owners make late payments
- Housing expenditure reduction similar to nondurable reduction
- Larger than estimates for formal borrowing Sullivan 2008; Keys, Tobacman, & Wang 2018; Hundtofte, Olafsson, & Pagel 2019; Braxton, Phillips, & Herkenhoff 2019

Outline

Empirical Strategy and Results

Value of Late Payments Simple Model Quantitative Model

Theory: Overview

- Goal: Quantify households' WTP for the option of late payments
 - Why? The amount of credit available is influenced by policy
 - Caveat: Only examining benefits of tenant protection
- Assume late payments are a loan repaid with interest
 - May understate benefit if rent is forgiven
 - May overstate benefits if late penalties are large
- Most applicable to renters
 - More likely to be liquidity constrained
 - Fewer options available

Outline

Empirical Strategy and Results

Value of Late Payments Simple Model Quantitative Model

Simple Model: One-Period Income Shock

- Consumption commitments model of Chetty and Szeidl (2007)
 - Household lives for T periods maximizing

$$E_0\sum_{t=0}^{T-1}\beta^t u(c_t, x_{t+1})$$

- Consumes an adjustable good (c) and a housing (x) with flow utility

$$u(c_t, x_t) = \frac{c^{1-\gamma_c}}{1-\gamma_c} + \mu \frac{x^{1-\gamma_x}}{1-\gamma_x}$$

- If $x_{t+1} \neq x_t$, pay adjustment cost $k \cdot x_t$
 - security deposits, moving expenses, lease penalties

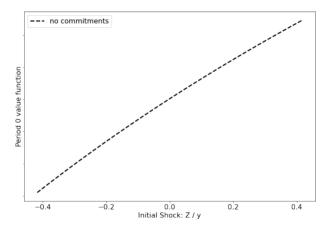
Simple Model: One-Period Income Shock

- Consumption commitments model of Chetty and Szeidl (2007)
 - Household lives for T periods maximizing

$$E_0\sum_{t=0}^{T-1}\beta^t u(c_t, x_{t+1})$$

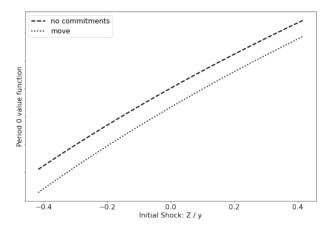
- Consumes an adjustable good (c) and a housing (x) with flow utility

$$u(c_t, x_t) = \frac{c^{1-\gamma_c}}{1-\gamma_c} + \mu \frac{x^{1-\gamma_x}}{1-\gamma_x}$$

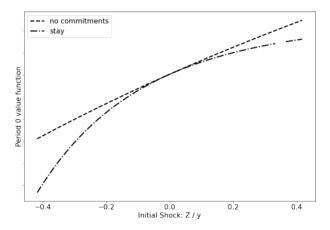

- If $x_{t+1} \neq x_t$, pay adjustment cost $k \cdot x_t$
 - security deposits, moving expenses, lease penalties

Income shocks

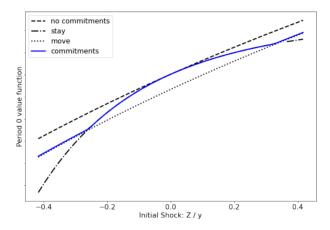
- Income loss in period 0
 - Income of *y* in periods $t = 0, \ldots, T 1$
 - Income shock in period 0 of size Z
 - Exogenous initial housing x₀
- Benchmark: Perfect Liquidity from Chetty and Szeidl (2007)
- Add credit constraints to show value of late payments


Benchmark: Perfect Liquidity

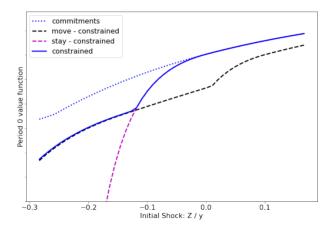
No commitments (k=0)



Benchmark: Perfect Liquidity


Commitments, move

Benchmark: Perfect Liquidity - commitments, stay Commitments, stay



Benchmark: Perfect Liquidity - commitments

Liquidity Constraints

Commitments

WTP Steps

Outline

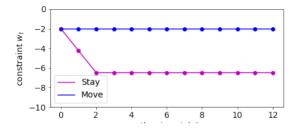
Empirical Strategy and Results

Value of Late Payments Simple Model Quantitative Model

Quantitative Model

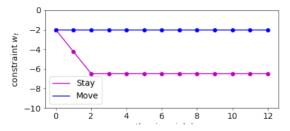
- Extend model to quantify value of late payments for job losers
 - Same utility function, adjustment costs
- Add uncertainty about unemp. spell duration Lentz 2009; Chetty 2008; Kroft and Notowidigdo 2016
- Compare expected utility across two options
 - Move no late payments, but cut both *c* and *x*
 - Stay up to 2 months late payments, repaid with interest

link


Parameter Values

Parameter	Definition	Value
(γ_c, γ_x)	CES utility (CES 0.5)	(2,2)
β	monthly discount factor	0.94 ^{1/12}
μ	housing weight	0.44
(y^e, y^u, y^w)	emp. and unemp. income	(5.6, 3.9, 3.9)
Т	number of periods	60
T_u	maximum duration of job search	12
(p_0,\ldots,p_{T-1})	monthly job-finding probabilities	estimates from ALP
<i>x</i> ₀	initial housing allocation	2.24 (40% of inc.)
k	adjustment cost	1 month's rent
	traditional credit limit	\$2,000
Wstay	maximum late payments	2 months

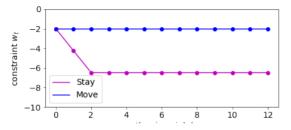
Solution Method Link


Value of Late Payments

Borrowing constraints of "Stayers" and "Movers":

Value of Late Payments

Borrowing constraints of "Stayers" and "Movers":

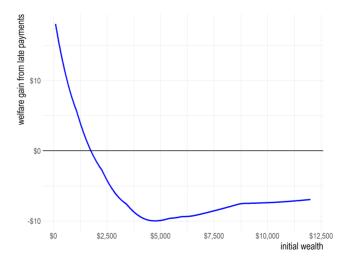

- Compare expected utility for initial assets w₀

$$WG(w_0) = \frac{V_0^{stay}(w_0, x_0) - V_0^{move}(w_0, x_0)}{\frac{1 - \beta^T}{1 - \beta} u_c(c^e(w_0, x_0), x^e(w_0, x_0))}$$

- Difference in EV between staying and moving
- Normalized by value of \$1 additional monthly income

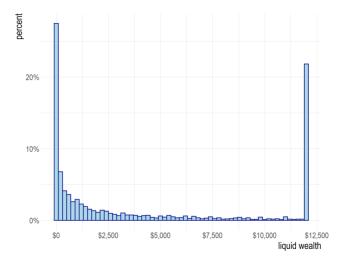
Value of Late Payments

Borrowing constraints of "Stayers" and "Movers":



- Compare expected utility for initial assets w₀

$$WG(w_0) = \frac{V_0^{stay}(w_0, x_0) - V_0^{move}(w_0, x_0)}{\frac{1 - \beta^T}{1 - \beta} u_c(c^e(w_0, x_0), x^e(w_0, x_0))}$$


- Difference in EV between staying and moving
- Normalized by value of \$1 additional monthly income

Value of Late Housing Payments

Link to Sensitivity Analysis Link

Liquid Wealth of Unemployed Households (SIPP)

All households with wealth > \$12,500 are binned at \$12,500.

Summary and Conclusions

- Late payments are common response to job loss
 - 1 in 5 household miss housing payments upon job loss
 - Spending response similar to nondurable expenditure
- Late payments provide large benefits for low-liquidity households
 - Benefits high across a reasonable range of parameters
- Caveats
 - Only quantify consumption smoothing benefits
 - Do not consider costs (e.g. applicant screening)
 - No external benefits (e.g. crime, reducing homelessness)

Thank You

Email: npattison@smu.edu Website: pattison-nate.github.io Twitter: NatePattison

Frequency: SIPP (1991-2010)

Share of households reporting event in the prior 12 months (SIPP households with unemployment in last 12 months, N = 15,919 household

Characteristics: SIPP Households with Recent Job Loss

	Missed payments	No missed payments	
	Median	Median	
Lower income			
Monthly household income prior to unemp. (\$1,000s)	3.2	5.0	
High housing expenditure share			
Housing costs / monthly income (%)	24.3	18.3	
Utility costs / monthly income (%)	8.9	5.4	
Illiquid			
Liquid assets (\$1,000s)	0.1	1.9	
Most do not move			
Eviction in prior 12 months (%, mean)	4.8	0.0	
Residence change within prior 12 months (%, mean)	19.4	15.5	
Number of households	2,378	13,522	
Households with unemployment in prio	r 12 months (1	1991-2008 SIPP	

Selection: Movers and Non-movers

Note:

	Change in housing expenditure (normalized by baseline income)				
	Non-movers only	Movers and non-movers	Movers pay full amount		
	(1)	(2)	(3)		
Unemployment	-0.013*** (0.003)	-0.014*** (0.003)	-0.011*** (0.003)		
Unemp. spells Observations	260 28,038	303 30,031	303 30,032		

*p<0.1; **p<0.05; ***p<0.01

Samples exclude changes over 100%. All regressions include a cubic in age, an indicator for

ownership, and month fixed effects. Back

Expenditure Shares of Average Household

Consumption category	Share of high-freq. expenditures	Share of total expenditures	Share of income	Std. dev. / mean
	20%	2.49/	400/	0.10
commitments (bills)	39%	34%	40%	0.13
housing	25%	22%	25%	0.12
utilities	9%	8%	10%	0.25
auto payment	5%	4%	5%	0.94
nondurable	22%	19%	22%	0.24
food	12%	11%	12%	0.30
gas & transportation	5%	5%	5%	0.34
housekeeping	1%	1%	1%	0.83
recreation	2%	1%	1%	1.18
personal & childcare	1%	1%	1%	1.76
semidurable	6%	5%	5%	0.68
apparel	3%	3%	3%	0.77
health	2%	2%	2%	1.25

ALP renters and mortgagors back

Changes in Income and Spending around Unemployment

	Change relative to average income 3-6 months prior					
	Income	Housing	Utilities	Nondurables	Semidurables	Credit card
	(1)	(2)	(3)	(4)	(5)	(6)
Unemployment	-0.235*** (0.018)	-0.013*** (0.003)	-0.002 (0.002)	-0.015*** (0.004)	-0.010*** (0.002)	-0.002 (0.021)
Share of inc. decline	100%	5.66%	0.67%	6.4%	4.05%	-0.8%
Unemp. spells Observations	225 27,093	260 28,038	259 28,041	260 28,042	260 28,042	165 17,564

*p<0.1; **p<0.05; ***p<0.01

Samples exclude changes over 100%. All regressions include a cubic in age, an indicator for

ownership, and month fixed effects. Back

Note:

- Agent begins period 0 unemployed with wealth w_0 and housing x_0
- Value function for $t = 0, \ldots, T 1$

s.t.
$$w_{t+1} = y^u + Rw_t - c_t - x_{t+1} - k \cdot \mathbb{I}_{x_{t+1} \neq x_t} \cdot x_t$$

 $w_{t+1} \geq \underline{w}_{t+1}$

- exogenous job-finding probabilities
- adjustment costs
- borrowing constraint

- Agent begins period 0 unemployed with wealth w_0 and housing x_0
- Value function for $t = 0, \ldots, T 1$

s.t.
$$w_{t+1} = y^u + Rw_t - c_t - x_{t+1} - k \cdot \mathbb{I}_{x_{t+1} \neq x_t} \cdot x_t$$

 $w_{t+1} \geq \underline{w}_{t+1}$

- exogenous job-finding probabilities
- adjustment costs
- borrowing constraint

- Agent begins period 0 unemployed with wealth w_0 and housing x_0
- Value function for $t = 0, \ldots, T 1$

s.t.
$$w_{t+1} = y^u + Rw_t - c_t - x_{t+1} - k \cdot \mathbb{I}_{x_{t+1} \neq x_t} \cdot x_t$$

 $w_{t+1} \geq \underline{w}_{t+1}$

- exogenous job-finding probabilities
- adjustment costs
- borrowing constraint

- Agent begins period 0 unemployed with wealth w_0 and housing x_0
- Value function for $t = 0, \ldots, T 1$

s.t.
$$w_{t+1} = y^u + Rw_t - c_t - x_{t+1} - k \cdot \mathbb{I}_{x_{t+1} \neq x_t} \cdot x_t$$

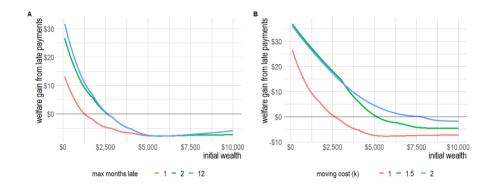
 $w_{t+1} \ge \underline{w}_{t+1}$

- exogenous job-finding probabilities
- adjustment costs
- borrowing constraint

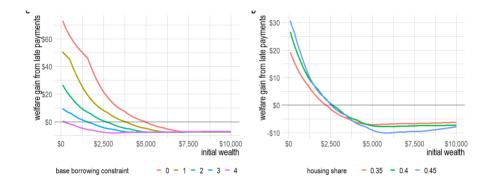
- Agent begins period 0 unemployed with wealth w_0 and housing x_0
- Value function for $t = 0, \ldots, T 1$

s.t.
$$w_{t+1} = y^u + Rw_t - c_t - x_{t+1} - k \cdot \mathbb{I}_{x_{t+1} \neq x_t} \cdot x_t$$

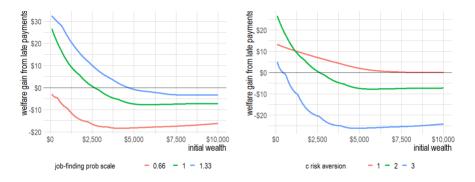
 $w_{t+1} \ge \underline{w}_{t+1}$


- exogenous job-finding probabilities
- adjustment costs
- borrowing constraint
- Terminal states one unemployment spell
 - Terminal employment earning y^e
 - Terminal unemployment earning y^w if no job by period T

Solution Method


- Discretize housing choices while unemployed
- Kinks in the value function \implies not concave
- With multiple time periods, kinks in value function propagate
 - Policy functions are discontinuous
- Use DC-EGM method Ishakov, Jørgensen, Rust, & Schjerning 2017
 - Euler equation still necessary, but not sufficient
 - Detect where not sufficient and take upper envelope

Back


Model Variation

Model Variation

Model Variation

Back