Illiquid Homeownership and the Bank of Mom and Dad

Eirik Eylands Brandsaas

UW-Madison

How much of the homeownership rate of the young (25-44) is accounted for by parental transfers?

- New life-cycle OLG model with altruistic parents
- · Adult children and parents interact without commitment
- Transfers account for 15 pp (31%) of homeownership

How much of the homeownership rate of the young (25-44) is accounted for by parental transfers?

- New life-cycle OLG model with altruistic parents
- · Adult children and parents interact without commitment
- Transfers account for 15 pp (31%) of homeownership
- Why are transfers so important?
 - Current transfers relax borrowing constraints ↑
 - 2. Future transfers reduce risk of illiquid homeownership↑
 - 3. No commitment \implies undersaving \downarrow

How much of the homeownership rate of the young (25-44) is accounted for by parental transfers?

- New life-cycle OLG model with altruistic parents
- · Adult children and parents interact without commitment
- Transfers account for 15 pp (31%) of homeownership
- Why are transfers so important?
 - Current transfers relax borrowing constraints ↑
 - 2. Future transfers reduce risk of illiquid homeownership↑
 - 3. No commitment \implies undersaving \downarrow
- · Applications: policy, financing frictions, racial differences

Housing Outcomes and the Bank of Mom and Dad

Data and Empirical Results

Data: Parental Wealth, Transfers, Children's Housing Outcomes

- Survey of Household Economics and Decisionmaking
 - · Reliance on downpayment assistance doubled since 2000

Data: Parental Wealth, Transfers, Children's Housing Outcomes

- · Survey of Household Economics and Decisionmaking
 - Reliance on downpayment assistance doubled since 2000
- American Housing Survey
 - Large drop in downpayment assistance around 2005

Data: Parental Wealth, Transfers, Children's Housing Outcomes

- · Survey of Household Economics and Decisionmaking
 - · Reliance on downpayment assistance doubled since 2000
- American Housing Survey
 - · Large drop in downpayment assistance around 2005
- Panel Study of Income Dynamics 1999-2017
 - · Panel with children and parents
 - I show that households with wealthier parents... Regressions
 - 1. Buy more expensive housing
 - 2. Are less likely to behind on mortgage payments
 - 3. Are less likely to downsize during unemployment

 ► Event study data and ► Model replication

Quantitative Life-Cycle Model

Model of Homeownership with Parental Transfers

- · Altruistic parent can transfer to adult child
- · Discrete rent/own choice
- · Loan-to-Value (LTV) requirement on mortgages
- \cdot Adjustment costs on housing \implies illiquid
- Child and parent interact without commitment

- Altruistic parent can transfer to adult child
- · Discrete rent/own choice
- · Loan-to-Value (LTV) requirement on mortgages
- \cdot Adjustment costs on housing \implies illiquid
- · Child and parent interact without commitment

Research Question

Contribution of altruistic transfers to homeownership

- · Altruistic parent can transfer to adult child
- · Discrete rent/own choice
- · Loan-to-Value (LTV) requirement on mortgages
- \cdot Adjustment costs on housing \implies illiquid
- · Child and parent interact without commitment

Research Question

- · Contribution of altruistic transfers to homeownership
 - a) Contribution of LTV and illiquidity to transfers

- · Altruistic parent can transfer to adult child
- · Discrete rent/own choice
- · Loan-to-Value (LTV) requirement on mortgages
- \cdot Adjustment costs on housing \implies illiquid
- Child and parent interact without commitment

Research Question

- · Contribution of altruistic transfers to homeownership
 - a) Contribution of LTV and illiquidity to transfers
 - b) How illiquidity affects the commitment problem

Altruism, Transfers, and No Commitment

Altruism

- Kids utility: $u(c_k, h_k)$
- Altruistic parents: $u(c_p, h_p) + \eta u(c_k, h_k)$
 - Warm glow: $u(c_p, h_p) + \eta f(t_p)$

Altruism, Transfers, and No Commitment

Altruism

- Kids utility: $u(c_k, h_k)$
- Altruistic parents: $u(c_p, h_p) + \eta u(c_k, h_k)$
 - Warm glow: $u(c_p, h_p) + \eta f(t_p)$

Parental Transfers

- Non-negative monetary transfers t_p
 - Equate marginal benefit of consumption bundles
- Bequests at death

Altruism, Transfers, and No Commitment

Altruism

- Kids utility: $u(c_k, h_k)$
- Altruistic parents: $u(c_p, h_p) + \eta u(c_k, h_k)$
 - Warm glow: $u(c_p, h_p) + \eta f(t_p)$

Parental Transfers

- \cdot Non-negative monetary transfers t_p
 - Equate marginal benefit of consumption bundles
- · Bequests at death

No Commitment Commitment

- · Timing of transfers and wealth allocation within the family
- Empirical evidence: little risk-sharing between generations

Model Timeline: Economically Active Population

- · Period: 2 years
- · Overlap for 30 years

Kid $a_k \in \{25, 27, \dots, 53\}$

Parent $a_p \in \{55, 57, \dots, 83\}$

•
$$a_p = a_k + 30$$

Model Timeline: New Kids

- Period: 2 years
- Overlap for 30 years

Kid
$$a_k \in \{25, 27, \dots, 53\}$$

· Age 30: New kid is born

Parent
$$a_p \in \{55, 57, \dots, 83\}$$

•
$$a_p = a_k + 30$$

Model Timeline: Kids \rightarrow Parents \rightarrow Bequest

- Period: 2 years
- Overlap for 30 years

Kid $a_k \in \{25, 27, \dots, 53\}$

- Age 30: New kid is born
- Age 55: New kid independent, inherit

Parent $a_p \in \{55, 57, \dots, 83\}$

- $\cdot a_p = a_k + 30$
- Age 85: Die, leave bequest

Model Timeline: Choices

- Period: 2 years
- Overlap for 30 years

Kid $a_k \in \{25, 27, \dots, 53\}$

- · Age 30: New kid is born
- Age 55: New kid independent, inherit
- Consumption/savings, Housing

Parent $a_p \in \{55, 57, \dots, 83\}$

- $\cdot a_p = a_k + 30$
- Age 85: Die, leave bequest
- Consumption/savings, Housing, transfers

Housing More Details

- Can rent h_r or own h_o . $h_r < h_o$
- Exogenous owner-occupied price p and rental price $q \times p$
- Depreciation δ on owner-occupied housing
- \cdot Adjustment costs on owner-occupied housing \Rightarrow Illiquid
 - · Proportional sales cost m_s and buying cost $m_b o adj(h,h')$

Housing More Details

- Can rent h_r or own h_o . $h_r < h_o$
- · Exogenous owner-occupied price p and rental price $q \times p$
- Depreciation δ on owner-occupied housing
- \cdot Adjustment costs on owner-occupied housing \implies Illiquid
 - Proportional sales cost m_s and buying cost $m_b \rightarrow adj(h, h')$
 - Transfer motive Kinks and Transfers #1

Housing More Details

- Can rent h_r or own h_o . $h_r < h_o$
- Exogenous owner-occupied price p and rental price $q \times p$
- Depreciation δ on owner-occupied housing
- \cdot Adjustment costs on owner-occupied housing \implies Illiquid
 - Proportional sales cost m_s and buying cost $m_b \to adj(h, h')$
 - Transfer motive Kinks and Transfers #1

Financial

- Can save using bonds (1+r)
- Can borrow only in mortgages $(1 + r + r^m)$, LTV constraint
- Net bond position b with interest rate r(b)

Housing More Details

- Can rent h_r or own h_o . $h_r < h_o$
- Exogenous owner-occupied price p and rental price $q \times p$
- Depreciation δ on owner-occupied housing
- \cdot Adjustment costs on owner-occupied housing \implies Illiquid
 - Proportional sales cost m_s and buying cost $m_b \to adj(h, h')$
 - Transfer motive Kinks and Transfers #1

Financial

- Can save using bonds (1+r)
- Can borrow only in mortgages $(1 + r + r^m)$, LTV constraint
 - Transfer motive Kinks and Transfers #2
- Net bond position b with interest rate r(b)

Housing More Details

- Can rent h_r or own h_o . $h_r < h_o$
- \cdot Exogenous owner-occupied price p and rental price $q \times p$
- Depreciation δ on owner-occupied housing
- \cdot Adjustment costs on owner-occupied housing \implies Illiquid
 - Proportional sales cost m_s and buying cost $m_b \to adj(h, h')$
 - Transfer motive Kinks and Transfers #1

Financial

- Can save using bonds (1+r)
- Can borrow only in mortgages $(1 + r + r^m)$, LTV constraint
 - Transfer motive Kinks and Transfers #2
- Net bond position b with interest rate r(b)

Income Endowment

- Life cycle income l_a , includes retirement benefit
- Kids: $w_{i,a} = l_a y_{i,a}$, $y_{i,a}$ persistent productivity shock
- Parents: $w_{i,a} = l_a$, no risk

- \cdot Income shock y_k realized at the beginning of the period
- Within period 2-stage game

- \cdot Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$

- Income shock y_k realized at the beginning of the period
- Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_{D} = (x_{D}, h_{D}, x_{k}, y_{k}, h_{k}, a_{k})$
- 2. Kid:
 - Consumption c_k , housing h'_k and bonds b'_k
 - Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$

- \cdot Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
 - Next period $\mathbf{s}'_p = (x'_p, h'_p, x'^*_k(\mathbf{s}_k), y'_k, h'^*_k(\mathbf{s}_k), a_k + 2)$
- 2. Kid:
 - Consumption c_k , housing h'_k and bonds b'_k
 - Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
 - Next period $\mathbf{s}'_p = (x'_p, h'_p, x'^*_k(\mathbf{s}_k), y'_k, h'^*_k(\mathbf{s}_k), a_k + 2)$
- 2. Kid:
 - · Consumption c_k , housing h'_k and bonds b'_k
 - Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$

- \cdot Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
 - Next period $\mathbf{s}'_p = (x'_p, h'_p, x'^*_k(\mathbf{s}_k), y'_k, h'^*_k(\mathbf{s}_k), a_k + 2)$
- 2. Kid:
 - · Consumption c_k , housing h'_k and bonds b'_k
 - Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$
 - Next period $\mathbf{s}'_{k} = (b^{*}_{p}(\mathbf{s}'_{p}), h^{*}_{p}(\mathbf{s}'_{p}), x'_{k} + t^{*}_{p}(\mathbf{s}'_{p}), y'_{k}, h'_{k}, a_{k} + 2)$

- \cdot Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
 - Next period $s'_p = (x'_p, h'_p, x'^*_k(s_k), y'_k, h'^*_k(s_k), a_k + 2)$
- 2. Kid:
 - Consumption c_k , housing h'_k and bonds b'_k
 - Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$
 - Next period $\mathbf{s}_k' = (b_p^*(\mathbf{s}_p'), h_p^*(\mathbf{s}_p'), x_k' + t_p^*(\mathbf{s}_p'), y_k', h_k', a_k + 2)$

Estimation

Standard Two-Step SMM Estimation

- 1. Some parameters directly from data and literature Table
 - Adjustment costs m_s = 0.075, m_b = 0.02
 - Max LTV = 0.8
 - Risk aversion $\gamma = 2.0$
 - Expenditure share housing $\phi = 0.175$

2. Estimate 6 parameters with 8 moments

Time Pref	Altruism	Own. Pref.	Mortg. Prem.	Price	Size Ratio
β	η	χ	r ^m	р	h_o/h_r
0.925	0.457	1.379	0.020	81.966	3.12
(0.004)	(0.068)	(0.156)	(0.006)	(6.610)	(0.291)

Model Fit

Moment	Data	Model	Informative
Median Wealth (25-44)	23.54	23.49	η
Median Wealth (55-74)	206.67	206.82	β
Owner (25-44)	0.49	0.48	р
Rent / Income (25-44)	0.23	0.21	ho/hr
Age First Own (25-44)	32.53	32.89	χ
LTV at purchase (25-44)	0.67	0.66	r ^m
Parent Transfers (55-74)	0.36	0.45	η
Transfers Around Purchase (25-44)	0.39	0.38	η

Model Fit

Moment	Data	Model	Informative
Median Wealth (25-44)	23.54	23.49	η
Median Wealth (55-74)	206.67	206.82	β
Owner (25-44)	0.49	0.48	р
Rent / Income (25-44)	0.23	0.21	ho/hr
Age First Own (25-44)	32.53	32.89	χ
LTV at purchase (25-44)	0.67	0.66	r ^m
Parent Transfers (55-74)	0.36	0.45	η
Transfers Around Purchase (25-44)	0.39	0.38	η
Non-Targeted Moment			
Parent Wealth Owners/Renters (25-44)	2.52	2.49	
Owners (25-73)	0.65	0.60	
$Prob(NewOwner t_p > \$5000, Controls)$ $-Prob(NewOwner t_p \le \$5000, Controls)$	(0.03-0.07)	0.06	

▶ Replicating Event Study from Chetty & Szeidl (2007)

Contribution of Transfer to

Homeownership

- 1. Constant parameters & prices, set $\eta=0$
 - Standard single-household model
- 2. Find new stationary distribution

- 1. Constant parameters & prices, set $\eta=0$
 - · Standard single-household model
- 2. Find new stationary distribution

Moment	Data	Altruism $\eta > 0$	No Altruism $\eta=0$
Median Wealth (25-44)	23.54	23.49	42.13
Median Wealth (55-74)	206.67	206.78	208.20
Owner (25-44)	0.49	0.48	0.33
LTV at Purchase (25-44)	0.67	0.66	0.46
Wealth at Purchase (25-44)	33.36	46.85	74.31
Owner (25-73)	0.65	0.60	0.55
Parent Wealth Owner/Renters	2.52	2.49	1.25

- 1. Constant parameters & prices, set $\eta = 0$
 - · Standard single-household model
- 2. Find new stationary distribution

Moment	Data	Altruism $\eta > 0$	No Altruism $\eta=0$
Median Wealth (25-44)	23.54	23.49	42.13
Median Wealth (55-74)	206.67	206.78	208.20
Owner (25-44)	0.49	0.48	0.33
LTV at Purchase (25-44)	0.67	0.66	0.46
Wealth at Purchase (25-44)	33.36	46.85	74.31
Owner (25-73)	0.65	0.60	0.55
Parent Wealth Owner/Renters	2.52	2.49	1.25

Homeownership decreases by 15pp (31%) ► Endog. Prices ► Risk

- 1. Constant parameters & prices, set $\eta = 0$
 - · Standard single-household model
- 2. Find new stationary distribution

Moment	Data	Altruism $\eta>0$	No Altruism $\eta=0$
Median Wealth (25-44)	23.54	23.49	42.13
Median Wealth (55-74)	206.67	206.78	208.20
Owner (25-44)	0.49	0.48	0.33
LTV at Purchase (25-44)	0.67	0.66	0.46
Wealth at Purchase (25-44)	33.36	46.85	74.31
Owner (25-73)	0.65	0.60	0.55
Parent Wealth Owner/Renters	2.52	2.49	1.25

- Homeownership decreases by 15pp (31%) ► Endog. Prices ► Risk
- Lower ownership, but wealth doubles?

- 1. Constant parameters & prices, set $\eta=0$
 - · Standard single-household model
- 2. Find new stationary distribution

Moment	Data	Altruism $\eta>0$	No Altruism $\eta=0$
Median Wealth (25-44)	23.54	23.49	42.13
Median Wealth (55-74)	206.67	206.78	208.20
Owner (25-44)	0.49	0.48	0.33
LTV at Purchase (25-44)	0.67	0.66	0.46
Wealth at Purchase (25-44)	33.36	46.85	74.31
Owner (25-73)	0.65	0.60	0.55
Parent Wealth Owner/Renters	2.52	2.49	1.25

- Homeownership decreases by 15pp (31%) ► Endog. Prices ► Risk
- · Lower ownership, but wealth doubles? Purchase threshold

- 1. Constant parameters & prices, set $\eta = 0$
 - · Standard single-household model
- 2. Find new stationary distribution

Moment	Data	Altruism $\eta>0$	No Altruism $\eta=0$
Median Wealth (25-44)	23.54	23.49	42.13
Median Wealth (55-74)	206.67	206.78	208.20
Owner (25-44)	0.49	0.48	0.33
LTV at Purchase (25-44)	0.67	0.66	0.46
Wealth at Purchase (25-44)	33.36	46.85	74.31
Owner (25-73)	0.65	0.60	0.55
Parent Wealth Owner/Renters	2.52	2.49	1.25

- Homeownership decreases by 15pp (31%) ► Endog. Prices ► Risk
- · Lower ownership, but wealth doubles? Purchase threshold
- Parental wealth gradient driven by transfers
 - · Not by intergenerational persistence in productivity

Homeownership

Policy, Frictions, Transfers, and

Which Frictions Generate a Role for Parental Wealth

- 1. Remove LTV requirement $LTV = 0.8 \rightarrow 1.0$
 - Now transfers account for 4pp, down from 15pp
 - No need for transfers to buy
 - Can always afford to stay in house

Which Frictions Generate a Role for Parental Wealth

- 1. Remove LTV requirement $LTV = 0.8 \rightarrow 1.0$
 - Now transfers account for 4pp, down from 15pp
 - · No need for transfers to buy
 - Can always afford to stay in house
- 2. Make housing liquid $m_s = 7.5\% \rightarrow 0\%, m_b = 2\% \rightarrow 0\%$
 - · Transfers account for 6pp, down from 15pp
 - · Wealthy parents: small effect
 - Poor parents: housing less risky, higher ownership

Which Frictions Generate a Role for Parental Wealth

- 1. Remove LTV requirement $LTV = 0.8 \rightarrow 1.0$
 - · Now transfers account for 4pp, down from 15pp
 - · No need for transfers to buy
 - Can always afford to stay in house
- 2. Make housing liquid $m_s = 7.5\% \rightarrow 0\%, m_b = 2\% \rightarrow 0\%$
 - · Transfers account for 6pp, down from 15pp
 - · Wealthy parents: small effect
 - Poor parents: housing less risky, higher ownership
- Illiquidity almost as important as mortgage constraints

Recent Policy Attention to First-Time Buyers

- US policy attempts to increase homeownership
- · Recent attention to young & first-time buyers
- Two common policies
 - 1. Reduced downpayments (e.g. DC, Texas)
 - 2. Reduced purchase cost m_b (e.g. Wisconsin, FHA, UK)
- How do these policies affect the role of parental wealth?
 - Introduce policy change to stationary distribution
 - · Only for kids (aged 25-53)
 - · Outcomes after one generation

Moment	Bench	LTV 0.85	$m_b = 0.0$	$m_{\rm s} = 0.055$
Median Wealth (25-44)	23.47			
Owner (25-44)	0.48			
Parent top 50%	0.61			
Parent bottom 50%	0.34			
Transfers Rate (55-74)	0.45			
Owner (25-73)	0.60			
Parent Wealth Own/Rent (25-44)	2.49			

Moment	Bench	LTV 0.85	$m_b = 0.0$	$m_{\rm s} = 0.055$
Median Wealth (25-44)	23.47	17.66		
Owner (25-44)	0.48	0.54		
Parent top 50%	0.61	0.73		
Parent bottom 50%	0.34	0.35		
Transfers Rate (55-74)	0.45	0.46		
Owner (25-73)	0.60	0.63		
Parent Wealth Own/Rent (25-44)	2.49	3.36		

- LTV ↑: Increase ownership, parents more important
 - LTV binding for households with wealthy parents

Moment	Bench	LTV 0.85	$m_b = 0.0$	$m_{\rm s} = 0.055$
Median Wealth (25-44)	23.47	17.66	25.83	
Owner (25-44)	0.48	0.54	0.49	
Parent top 50%	0.61	0.73	0.62	
Parent bottom 50%	0.34	0.35	0.35	
Transfers Rate (55-74)	0.45	0.46	0.44	
Owner (25-73)	0.60	0.63	0.61	
Parent Wealth Own/Rent (25-44)	2.49	3.36	2.51	

- LTV ↑: Increase ownership, parents more important
 - \cdot LTV binding for households with wealthy parents
- $m_b \downarrow$: Almost no effects

Moment	Bench	LTV 0.85	$m_b = 0.0$	$m_{\rm s} = 0.055$
Median Wealth (25-44)	23.47	17.66	25.83	19.21
Owner (25-44)	0.48	0.54	0.49	0.47
Parent top 50%	0.61	0.73	0.62	0.58
Parent bottom 50%	0.34	0.35	0.35	0.35
Transfers Rate (55-74)	0.45	0.46	0.44	0.44
Owner (25-73)	0.60	0.63	0.61	0.60
Parent Wealth Own/Rent (25-44)	2.49	3.36	2.51	2.27

- LTV ↑: Increase ownership, parents more important
 - LTV binding for households with wealthy parents
- $m_b \downarrow$: Almost no effects
- $m_s \downarrow$: Decrease ownership(!), parents less important
 - Reduces over-consumption of housing

- Transfers account for 15pp (31%)
 - · OLG life-cycle model with altruism and housing

- Transfers account for 15pp (31%)
 - · OLG life-cycle model with altruism and housing
- Policies and parental transfers
 - Stricter regulation often increases reliance on transfers
 - Reducing sales costs decrease role of transfers

- Transfers account for 15pp (31%)
 - · OLG life-cycle model with altruism and housing
- Policies and parental transfers
 - · Stricter regulation often increases reliance on transfers
 - Reducing sales costs decrease role of transfers
- · Interaction between liquidity, altruism, and commitment
 - · Transfers generate preferences for illiquidity

Appendix

- \cdot Income shock y_k realized at the beginning of the period
- Within period 2-stage game

→ Back

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$

▶ Back

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
- 2. Kid:
 - Consumption c_k , housing h'_k and bonds b'_k
 - Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$

▶ Back

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game

1. Parent:

- · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
- Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
- Next period $\mathbf{s}'_p = (x'_p, h'_p, x'^*_k(\mathbf{s}_k), y'_k, h'^*_k(\mathbf{s}_k), a_k + 2)$

- Consumption c_k , housing h'_k and bonds b'_k
- Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$

▶ Back

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game
- 1. Parent:
 - · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
 - Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
 - Next period $\mathbf{s}'_{p} = (x'_{p}, h'_{p}, x'^{*}_{k}(\mathbf{s}_{k}), y'_{k}, h'^{*}_{k}(\mathbf{s}_{k}), a_{k} + 2)$

- · Consumption c_k , housing h'_k and bonds b'_k
- Kid States $\mathbf{s}_k = (\mathbf{b}_p', \mathbf{h}_p', \mathbf{x}_k + \mathbf{t}_p, \mathbf{y}_k, \mathbf{h}_k, \mathbf{a}_k)$

▶ Back

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game

1. Parent:

- · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
- Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
- Next period $\mathbf{s}'_p = (x'_p, h'_p, x'^*_k(\mathbf{s}_k), y'_k, h'^*_k(\mathbf{s}_k), a_k + 2)$

- · Consumption c_k , housing h'_k and bonds b'_k
- Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$
- Next period $\mathbf{s}'_k = (b^*_p(\mathbf{s}'_p), h^*_p(\mathbf{s}'_p), x'_k + t^*_p(\mathbf{s}'_p), y'_k, h'_k, a_k + 2)$

▶ Back

- Income shock y_k realized at the beginning of the period
- · Within period 2-stage game

1. Parent:

- · Consumption c_p , housing h'_p , bonds b'_p , and transfers t_p
- Parent States $\mathbf{s}_p = (x_p, h_p, x_k, y_k, h_k, a_k)$
- Next period $s'_{p} = (x'_{p}, h'_{p}, x'^{*}_{k}(s_{k}), y'_{k}, h'^{*}_{k}(s_{k}), a_{k} + 2)$

- · Consumption c_k , housing h'_k and bonds b'_k
- Kid States $\mathbf{s}_k = (b_p', h_p', x_k + t_p, y_k, h_k, a_k)$
- Next period $\mathbf{s}'_k = (b^*_p(\mathbf{s}'_p), h^*_p(\mathbf{s}'_p), x'_k + t^*_p(\mathbf{s}'_p), y'_k, h'_k, a_k + 2)$

Kid's Decision Problem

Kid's Problem: Enter as owner, leaving as renter

$$V_{k}^{r}(\mathbf{s_{k}}) = \max_{c_{k},b_{k}',h_{k}'=h_{r}} u(c_{k},h_{r}) + \beta \mathbb{E}\left[V_{k}(\mathbf{s_{k}'})\right]$$
s.t. $b_{k}' = x_{k} + t_{p} + w_{k} - c_{k} - qph_{r} - m_{s}ph_{o}$

$$x_{k}' = b_{k}'(1 + r(b_{k}'))$$

$$b_{k}' \ge 0$$

Kid's Decision Problem

Kid's Problem: Enter as owner, leaving as renter

$$V_{k}^{r}(\mathbf{s_{k}}) = \max_{c_{k},b_{k}',h_{k}'=h_{r}} u(c_{k},h_{r}) + \beta \mathbb{E}\left[V_{k}(\mathbf{s_{k}'})\right]$$
s.t. $b_{k}' = x_{k} + t_{p} + w_{k} - c_{k} - qph_{r} - m_{s}ph_{o}$

$$x_{k}' = b_{k}'(1 + r(b_{k}'))$$

$$b_{k}' \ge 0$$

Expensive downsizing (illiquid)

► All Decisions Problem

► Back to solution overview

Kid's Decision Problem

Kid's Problem: Enter as owner, leaving as renter

$$V_{k}^{r}(\mathbf{s_{k}}) = \max_{c_{k},b_{k}',h_{k}'=h_{r}} u(c_{k},h_{r}) + \beta \mathbb{E}\left[V_{k}(\mathbf{s_{k}'})\right]$$
s.t. $b_{k}' = x_{k} + t_{p} + w_{k} - c_{k} - qph_{r} - m_{s}ph_{o}$

$$x_{k}' = b_{k}'(1 + r(b_{k}'))$$

$$b_{k}' \ge 0$$

- Expensive downsizing (illiquid)
- 'Wealthy Hand-to-Mouth': High MPC households

► All Decisions Problem ► Back to solution overview

Solution

- Dynastic overlapping generations life-cycle model with stage games
- · Solve backward & fixed point iteration
- · Markov Perfect Equilibrium
- Stationary Distribution

Literature: Life-Cycle, Housing, and Altruism • More • Model

Model

	Without Housing	With Housing
Without Altruism	Standard Life-Cycle	A
With Altruism	В	This Paper

Literature: Life-Cycle, Housing, and Altruism • More • Model

Model

	Without Housing	With Housing
Without Altruism	Standard Life-Cycle	A
With Altruism	В	This Paper

Contributions

A) Housing: Mabille (2020), Paz-Pardo (2020), Fisher &

Gervais (2012), Barczyk, Fahle, Kredler (2020)

New: Parental transfers

B) Altruism: Altonji, Hayashi, Kotlikoff (1997), Kaplan (2012),

Barczyk & Kredler (2018), Boar (2020)

New: Housing

Ex: Housing & Borrowing Constraints Induce Non-Convexities

· Can always rent

Ex: Housing & Borrowing Constraints Induce Non-Convexities

- · Can always rent
- Low wealth: no feasible down payment
- Just enough to buy: $c_k = \varepsilon$ ("house poor")

Ex: Housing & Borrowing Constraints Induce Non-Convexities

- · Can always rent
- Low wealth: no feasible down payment
- Just enough to buy: $c_k = \varepsilon$ ("house poor")
- Upper envelope has kinks

 \implies the marginal utility of wealth V_x jumps at tenure transition

Ex: Housing & Borrowing Constraints Induce Non-Convexities

- · Can always rent
- Low wealth: no feasible down payment
- Just enough to buy: $c_k = \varepsilon$ ("house poor")
- Upper envelope has kinks

 \implies the marginal utility of wealth V_x jumps at tenure transition

- · Gifts around the kink: increases bang for parent buck
 - Child may strategically allocate around kinks

What happens to envelope with costs?

- What happens to envelope with costs?
- Assume household own.
 If he sells pays extra cost

- What happens to envelope with costs?
- Assume household own.
 If he sells pays extra cost
- Shift in V(rent)
 - · & in upper envelope

- What happens to envelope with costs?
- Assume household own.
 If he sells pays extra cost
- Shift in V(rent)
 - · & in upper envelope
- Steeper value function at threshold

· Incentive to give transfers to keep child in the house

Regressions • Back

Regression Formulation

$$Y_{i} = \beta_{1} \ln(Wealth)_{p(i),t-2} + \beta_{2} \ln(Income_{i,t-2}) + \beta_{3} \ln(NetWorth_{i,t-2}) + \gamma X_{i,t} + \varepsilon_{i},$$

Regressions • Back

	In(House Value)	Ever Behind	Behind First	
Parent				
In(Wealth) (t-2)	0.072***	-0.023**	-0.022**	
	(0.020)	(800.0)	(0.007)	
Child				
In(Net Worth) (t-2)	0.079***	-0.014*	-0.017*	
	(0.016)	(0.007)	(0.006)	
In(Income) (t-2)	0.388***	0.001	0.019	
	(0.035)	(0.015)	(0.013)	
N	884	709	372	

PSID 1999-2017, and include year fixed-effects, linear and cubic age trends, and control for education, race, and family size.

- · Parental wealth associated with buying pricier houses
- Parental wealth associated with better mortgage outcomes

Event Study With Control Variables • Back

Without controls

With controls

PSID 1999-2017. The set of controls include dummies for children's wealth and income quintiles, a full set of age, year, and state dummies, and dummy variables for college, high-school, and marriage.

Decision Problems

Kid's problem conditional on buying

$$V_{k}(\mathbf{s_{k}}) = \max_{c_{k}, b'_{k}, h'_{k} = h_{o}} u(c_{k}, h'_{k}) + \beta \mathbb{E} \left[V_{k}(\mathbf{s'_{k}}) \right]$$
s.t. $b'_{k} = x_{k} + t_{p} + w_{k} - c_{k} - ph'_{k} - adj(h_{k}, h'_{k})$

$$x'_{k} = b'_{k}(1 + r(b'_{k})) + ph'_{k}(1 - \delta)$$

$$b'_{k} \ge - LTVph'_{k},$$

$$\begin{aligned}
\mathbf{s}_{\mathbf{k}} &= (b'_{p}, h'_{p}, x_{k} + t_{p}, y_{k}, h_{k}, a_{k}), \\
\mathbf{s}'_{\mathbf{k}} &= (b^{*}_{p}(\mathbf{s}'_{p}), h^{*}_{p}(\mathbf{s}'_{p}), x'_{k} + t^{*}_{p}(\mathbf{s}'_{p}), y'_{k}, h'_{k}, a_{k} + 2), \\
\mathbf{s}_{\mathbf{p}} &= (x_{p}, h_{p}, x_{k}, y_{k}, h_{k}, a_{k}), \\
\mathbf{s}'_{\mathbf{p}} &= (x'_{p}, h'_{p}, x'^{*}_{k}(\mathbf{s}_{\mathbf{k}}), y'_{k}, h'^{*}_{k}(\mathbf{s}_{\mathbf{k}}), a_{k} + 2)
\end{aligned}$$

Decision Problems

Parent's problem conditional on buying

$$\begin{aligned} V_{p}(\mathbf{s_{p}}) &= \max_{c_{p}, b'_{p}, h'_{p}, \mathbf{t_{p}}} u(c_{p}, h'_{p}) + \eta u\left(c_{k}^{*}(\mathbf{s_{k}}), h_{k}^{*}(\mathbf{s_{k}})\right) + \beta \mathbb{E}\left[V_{p}(\mathbf{s'_{p}})\right] \\ &\text{s.t.} \quad b'_{p} = x_{p} + w_{p} - c_{p} - t_{p} - ph'_{p} - adj(h_{p}, h'_{p}) \\ &\quad x'_{p} = b'_{p}(1 + r(b'_{p}) + ph_{p}(1 - \delta) \\ &\quad t_{p} \geq 0, b'_{p} \geq -LTVph'_{p} \end{aligned}$$

$$\begin{aligned} \mathbf{s}_{\mathbf{k}} &= (b'_{p}, h'_{p}, x_{k} + \mathbf{t}_{p}, y_{k}, h_{k}, a_{k}), \\ \mathbf{s}'_{\mathbf{k}} &= (b^{*}_{p}(\mathbf{s}'_{p}), h^{*}_{p}(\mathbf{s}'_{p}), x'_{k} + t^{*}_{p}(\mathbf{s}'_{p}), y'_{k}, h'_{k}, a_{k} + 2), \\ \mathbf{s}_{p} &= (x_{p}, h_{p}, x_{k}, y_{k}, h_{k}, a_{k}), \\ \mathbf{s}'_{p} &= (x'_{p}, h'_{p}, x'^{*}_{k}(\mathbf{s}_{\mathbf{k}}), y'_{k}, h'^{*}_{k}(\mathbf{s}_{\mathbf{k}}), a_{k} + 2) \end{aligned}$$

Distribution

Law of Motion for Kids 25-51

$$f_{a}(\mathbf{s}'_{p}) = \int_{\mathbf{s}_{p} \in \mathcal{S}_{p}} \mathbf{1}_{\{x'_{p} = x^{*}_{p}(\mathbf{s}_{p})\}} \mathbf{1}_{\{h'_{p} = h^{*}_{p}(\mathbf{s}_{p})\}} \mathbf{1}_{\{x'_{k} = x^{*}_{k}(\mathbf{s}_{k}(\mathbf{s}_{p}))\}} \mathbf{1}_{\{h'_{k} = h^{*}_{k}(\mathbf{s}_{k}(\mathbf{s}_{p}))\}} \times \\ \pi(y'_{k}|y_{k}) df_{a-2}(\mathbf{s}_{p}).$$

Law of Motion for Kids 53

$$f_{25}(\mathbf{s}'_{p}) = \int_{\mathbf{s}_{p} \in \mathcal{S}_{p}} \mathbf{1}_{\{x'_{p} = x^{*}_{p}(\mathbf{s}_{p}) + x^{*}_{k}(\mathbf{s}_{k}(\mathbf{s}_{p}))\}} \mathbf{1}_{\{h'_{p} = h^{*}_{p}(\mathbf{s}_{p})\}} \mathbf{1}_{\{h'_{k} = h_{r}\}} \times F(x'_{k}, y'_{k} | x_{k}, y_{k}) df_{53}(\mathbf{s}_{p}).$$

Fixed point: $f^*(s_p) = \mathcal{H}(f^*(s_p), g(s_p)))$

Outside Parameters • Back

Parameter		Value	Source
Period Length	-	2 years	PSID Frequency
Rental Price	q	0.10	Standard
Deprecation	δ	0.05	Standard
Risk-free Rate	r^f	0.04	Standard
Expenditure Share Housing	ξ	0.175	Standard
Risk Aversion	γ	2.0	Standard
Max Loan-to-Value	LTV	0.8	Standard
Rental Size	hr	1.0	Normalization
Initial Distribution	$F(x_{53}, v_{53})$	Fig. 4	PSID
Deterministic Income	l_a	Fig. 2a	PSID
Productivity Shocks for Kids	$y, \Pi(y' y)$	Fig. 2b,3	PSID
Selling & Buying Cost	(m_s, m_b)	(0.075,0.02)	Yang (2009)

Figure 1: Calibrated Income Process

(b) Productivity Shifter $y_{i,a}$

► Table of Values

Figure 3: Age-State Dependent Transition Probabilities $\Pi(y_{i,a+2}|y_{i,a})$

▶ Table of Values

Figure 4: Initial Distribution $F(x_{53}, y_{53})$ by wealth x_{53} and productivity y_{53}

Note: The vertial lines denote the first, second, and third income shifters for the kids. Within each interval each point denotes a wealth quartile.

► Table of Values

Why No Commitment Two Period Full Model

- 1. Wealth allocation matter \iff lack of commitment Figure
 - $\boldsymbol{\cdot}$ More important with housing due to LTV constraint

- 1. Wealth allocation matter \iff lack of commitment Figure
 - · More important with housing due to LTV constraint
- 2. Timing of transfers matter
 - · With commitment timing is indeterminate
 - Treatment effect of transfers on home-buying \implies lack of commitment

- 1. Wealth allocation matter \iff lack of commitment Figure
 - · More important with housing due to LTV constraint
- 2. Timing of transfers matter
 - · With commitment timing is indeterminate
 - Treatment effect of transfers on home-buying ⇒ lack of commitment
- 3. Literature: limited risk sharing \iff lack of commitment
 - Income risk and illiquid housing makes risk important

- 1. Wealth allocation matter \iff lack of commitment Figure
 - · More important with housing due to LTV constraint
- 2. Timing of transfers matter
 - · With commitment timing is indeterminate
 - Treatment effect of transfers on home-buying \implies lack of commitment
- 3. Literature: limited risk sharing \iff lack of commitment
 - · Income risk and illiquid housing makes risk important
- 4. Consumption ratio $\frac{c_k}{c_p}$ move with age Figure
 - · Commitment \implies constant c_k/c_p

Consumption ratio c_k/c_p over age (Back)

Homeownership by Kid and Parent Wealth

Endogenous Prices • Back

Supply:
$$log(H^s) = \alpha_0 + \alpha_1 log(p)$$

Endogenous Prices • Back

Supply: $log(H^s) = \alpha_0 + \alpha_1 log(p)$

	Altruism	Without Altruism		
Moment	Benchmark	Elastic	Middle	Inelastic
Aggregate Moments				
Supply Elasticity		∞	5.00	0.00
House Price	81.97	81.97	80.89	77.85
Owner (25-73)	0.60	0.55	0.56	0.60
Targeted Moments				
Median Wealth (25-44)	23.47	42.13	42.24	43.00
Median Wealth (55-74)	206.78	208.20	209.95	206.32
Owner (25-44)	0.48	0.33	0.35	0.37
Rent / Income (25-44)	0.21	0.20	0.20	0.19
Age First Own (25-44)	32.89	37.52	36.72	36.81
LTV at Purchase (25-44)	0.66	0.46	0.48	0.49
Parent Transfers (55-74)	0.45	0.00	0.00	0.00
Transfers Around Purchase (25-44)	0.37	0.00	0.00	0.00

Aggregate Price Risk or Parent's Income Risk • Back

- Transitory income and health expense shocks for parents
 Persistent aggregate stochastic price level
- (0.7, 1.0, 1.3) *p_{bench}* as in Corbae & Quintin (2015)

Aggregate Price Risk or Parent's Income Risk • Back

- Transitory income and health expense shocks for parents
- Persistent aggregate stochastic price level
 (0.7, 1.0, 1.3) p_{bench} as in Corbae & Quintin (2015)

		Benchmark		Parent Inc. Risk		Price Risk	
Moment	Data	$\eta > 0$	$\eta = 0$	$\eta > 0$	$\eta = 0$	$\eta > 0$	$\eta = 0$
Median Wealth (K)	23.54	23.65	42.10	22.75	42.36	33.68	55.74
Median Wealth (P)	206.67	206.86	208.64	222.66	227.48	212.77	221.08
Owner (K)	0.49	0.48	0.33	0.46	0.33	0.47	0.32
Rent / Income (K)	0.23	0.21	0.20	0.21	0.20	0.21	0.20
Age First Own (K)	32.53	32.85	37.52	32.89	36.94	32.50	36.86
LTV at Purchase (K)	0.67	0.65	0.46	0.65	0.46	0.58	0.44
Parent Transfers (55-74)	0.36	0.45	0.00	0.44	0.00	0.44	0.00
Transfers Purchase (K)	0.39	0.36	0.00	0.39	0.00	0.26	0.00

 Transfers account for 15pp (benchmark), 13pp (parent income risk), 15pp (aggregate price risk)

Removing Frictions

	Benchmark		No LTV		Liq. Housing		Certain Inc.	
Moment	Altr	No Altr	Altr	No Altr	Altr	No Altr	Altr	No Altr
Targeted Moments								
Median Wealth (25-44)	23.47	42.13	12.09	39.71	17.50	39.18	29.03	29.03
Median Wealth (55-74)	206.78	208.20	182.58	202.51	194.68	194.02	194.03	179.64
Owner (25-44)	0.48	0.33	0.55	0.51	0.51	0.45	0.62	0.61
Rent / Income (25-44)	0.21	0.20	0.22	0.18	0.23	0.22	0.13	0.13
Age First Own (25-44)	32.89	37.52	32.60	32.19	31.04	33.28	32.53	32.73
LTV at Purchase (25-44)	0.66	0.46	0.71	0.65	0.70	0.63	0.74	0.74
Parent Transfers (55-74)	0.45	0.00	0.44	0.00	0.42	0.00	0.33	0.00
Transfers Purch. (25-44)	0.37	0.00	0.48	0.00	0.43	0.00	0.22	0.00
Non-Targeted Moments								
Parent Wealth Gradient	2.49	1.25	4.26	0.79	1.62	1.44	1.03	1.03
Owner (25-73)	0.60	0.55	0.68	0.73	0.65	0.67	0.85	0.85
Wealth at Purc. (25-44)	46.85	74.31	41.51	52.11	40.47	48.31	43.08	40.84
Mortgage (25-44)	123.93	60.25	146.85	125.28	126.81	90.93	186.84	186.70

▶ Back

Literature on Housing and Transfers • Intro • Back

- Intra-generational: Marriage/divorce, student loans:
 - Chang (2020), Fisher & Gervais (2011, IER), Mabille (2020), Paz-Pardo (2020)
 - This paper: Across generations, parents \rightarrow kids
- Inter-generational: No papers with rent/own for kids.
 - Barczyk, Fahle & Kredler (R&R REStud): Purchase only at retirement, Focus: Kid's care decisions
 - Lan (WP), Kaplan (2012)
 - This paper: Transfers to kids & kid's homeownership
- Life-Cycle Savings & Inequality: Ignore housing or transfers
 - Boar (2019), Lee & Seshadri (2019 JPE), Altonji, Hayashi & Kotlikoff (1997 JPE).
 - This paper: Focus on housing and transfers
- Empirical/Reduced Form: Effect of transfers on buying
 - Guiso & Jappeli (2001 JMCB), Charles & Hurst (2005 ReStat), Lee et al. (2020 JHE), Blickle and Brown (2019 JMCB)...
 - · This paper: Aggregate outcomes, illiquidity

Estimation procedure lends itself to verifying identification

- Solve model for 'many' parameter vectors from quasi-random hypercube
- 2. Local search from best candidate

Estimation procedure lends itself to verifying identification

- Solve model for 'many' parameter vectors from quasi-random hypercube
 - $\frac{\partial moment}{\partial parameter}$ with constant distribution of other parameters
- 2. Local search from best candidate

Estimation procedure lends itself to verifying identification

- Solve model for 'many' parameter vectors from quasi-random hypercube
 - $\frac{\partial moment}{\partial parameter}$ with constant distribution of other parameters
- 2. Local search from best candidate

The Effect of Discount Factor β on Median Wealth (55-74)

Identification of Altruism η

Non-Targeted Moment: Event Study

Chetty & Szeidl (2007, JPE)

- · Income/wealth shocks may induce house downsizing
- · Event study
 - · Changes in housing consumption growth at unemployment
 - · Unemployment somewhat exogenous
 - Housing consumption = rent or 5% of market value
- \cdot Illiquid housing \Longrightarrow smaller response for food
- This paper: By parental wealth

Non-Targeted Moment: Event Study

- I replicate Chetty & Szeidl (2007 JPE)
 - But I break it down by parental wealth

Model: Bottom 75%: Significant negative growth, Top 25%: No change

Non-Targeted Moment: Event Study

- I replicate Chetty & Szeidl (2007 JPE)
 - · But I break it down by parental wealth
 - Unemployment in model = lowest productivity $v_{i,a}$ level

Model: Bottom 75%: Significant negative growth, Top 25%: No change

Non-Targeted Moment: Event Study

- I replicate Chetty & Szeidl (2007 JPE)
 - But I break it down by parental wealth

Model: Bottom 75%: Significant negative growth, Top 25%: No change

- · Model patterns consistent with data
- · Drop only for households with non-wealthy parents

▶ Back to Model Fit ▼ Back to Empirical Evidence

Regressions • Back to Empirical Evidence

	(1)	(2)	(3)	(4)	(5)
	House Value	Ever Behind	Behind First	Behind RE	Behind FE
Parent					
Wealth (t-2)	0.072***	-0.023**	-0.022**	-0.008*	-0.007
	(0.020)	(0.008)	(0.007)	(0.004)	(0.009)
Child					
Net Worth (t-2)	0.079***	-0.014*	-0.017*	-0.008*	-0.002
	(0.016)	(0.007)	(0.006)	(0.003)	(0.004)
Income (t-2)	0.388***	0.001	0.019	-0.001	0.014
	(0.035)	(0.015)	(0.013)	(0.007)	(0.011)
N	884	709	372	2,057	2,057

All regressions use PSID 1999-2017, and include year fixed-effects, linear and cubic age trends, and control for education, race, and family size.

Housing Market Details

$$adj(h_{a+1},h_a) = \begin{cases} m_b p_t h_o & \text{if new owner: } h_a = h_r, h_{a+1} = h_o \\ m_s p_t h_o & \text{if new renter: } h_a = h_o, h_{a+1} = h_r \\ 0 & \text{if no change: } h_{a+1} = h_a, \end{cases}$$

▶ Markets

With Commitment

- \cdot Commitment \Longrightarrow Family planner problem lacktriangle Formulation
 - Pick Pareto weights to match c_p/c_k ratio = 1.09
- What is the distance between stationary allocations?

- Commitment ⇒ Family planner problem ► Formulation
 - Pick Pareto weights to match c_p/c_k ratio = 1.09
- · What is the distance between stationary allocations?

		Illiquid		Liquid	
Variable	Com.	No Com.	Dist.	No Com.	Dist.
Owner (25-44)	0.14	0.48			
Owner (55-73)	0.53	0.71			
Median Family Wealth (25-44)	75.91	311.39			
Age First Own (25-44)	41.50	32.85			
Lifetime Utils Kid	8.88	7.00			
Lifetime Utils Parent	12.99	10.25			

- Commitment ⇒ Family planner problem ► Formulation
 - Pick Pareto weights to match c_p/c_k ratio = 1.09
- · What is the distance between stationary allocations?

		Illiquid		Liquid	
Variable	Com.	No Com.	Dist.	No Com.	Dist.
Owner (25-44)	0.14	0.48	0.34		
Owner (55-73)	0.53	0.71	0.18		
Median Family Wealth (25-44)	75.91	311.39	235.48		
Age First Own (25-44)	41.50	32.85	8.65		
Lifetime Utils Kid	8.88	7.00	1.88		
Lifetime Utils Parent	12.99	10.25	2.74		

- Commitment ⇒ Family planner problem → Formulation
 - Pick Pareto weights to match c_p/c_k ratio = 1.09
- · What is the distance between stationary allocations?

		Illiquid		Liquid	
Variable	Com.	No Com.	Dist.	No Com.	Dist.
Owner (25-44)	0.14	0.48	0.34	0.51	0.38
Owner (55-73)	0.53	0.71	0.18	0.77	0.24
Median Family Wealth (25-44)	75.91	311.39	235.48	298.27	222.36
Age First Own (25-44)	41.50	32.85	8.65	30.92	10.58
Lifetime Utils Kid	8.88	7.00	1.88	7.01	1.88
Lifetime Utils Parent	12.99	10.25	2.74	10.25	2.74

- · Takeaway: Illiquidity reduces commitment problem
 - Decreases overconsumption of housing

Family Planner Problem • Back

- Pools wealth: $x_f = x_k + x_p$
- Pareto weight θ on kids utility:
- States: $\mathbf{s}_f = (x_f, h_k, h_p, v_k, a_k)$

Both rented & both rent:

$$V_{f}(\mathbf{s}_{f}) = \max_{c_{k}, c_{p}, h'_{k} = h'_{p} = h_{r}, b'_{f}} (1 - \theta)u(c_{p}, h'_{p}) + [(1 - \theta)\eta + \theta]u(c_{k}, h'_{k}) + \beta \mathbb{E}V_{f}(\mathbf{s}'_{f}),$$

s.t.
$$b'_f = x_f + w_k + w_p - c_k - c_p - qp(h'_k + h'_p),$$

 $x'_f = b'_f(1 + r(b'_f)),$
 $b'_f \ge 0, c_k \ge 0, c_p \ge 0.$

Two-Period Model

Assumption

A1: Limits Kid's Utility: The first derivative of *u* approaches i) infinity at zero, and ii) zero at infinity for both goods

A2: Substitution in Housing: The marginal utility of consumption is non-decreasing in housing consumption. (Not perfect substitutes)

A3: *Parent's Utility*: Increasing, concave and satisfies Inada conditions

Two-Period Setup

Adjustment Costs & $V_{k'}(x'_k + t'_p, h_k)$: Non-Convexities

- Free adjustment ($\kappa = 0$)
- No adjustment $(\kappa = \infty)$
 - Tangency point
 - More curvature
- Costly adjustment ($\kappa > 0$)
 - Away from tangency
 pay cost
 - · Kinks at (s, S)
 - · Risk loving around kinks
 - \cdot Kinks \Longrightarrow slope jumps
- Chetty & Szeidl (2007): Risk aversion
- This paper: Transfers

Adjustment Costs & $V_{k'}(X'_k + t'_p, h_k)$: Jumps in Marginal Utility

- Free adjustment ($\kappa = 0$)
- No adjustment $(\kappa = \infty)$
 - · Tangency point
 - · More curvature
- Costly adjustment ($\kappa > 0$)
 - Away from tangency
 ⇒ pay cost
 - Kinks at (s, S)
 - Risk loving around kinks
 - \cdot Kinks \Longrightarrow slope jumps
- Chetty & Szeidl (2007): Risk aversion
- · This paper: Transfers

The Effect of Illiquidity on Parent's Transfers $t'_{\rho}(x'_{\rho}, x'_{k}, h_{k})$

- Free adjustment ($\kappa = 0$)
 - Transfers decreasing in kid wealth
- No adjustment $(\kappa = \infty)$
 - · Larger transfers
- Costly adjustment ($\kappa > 0$)
 - · Jump in transfer
 - · To the left of s
- Kid should be at jump point
 - · Hand-to-Mouth
 - · House poor

▶ Back to markets

Illiquid Housing Increases Kid's Over-Consumption $X'_k(x'_p, X_k)$

- Without altruism $(\eta = 0)$
 - Perfect intertemporal smoothing
- Free adjustment ($\kappa = 0$)
 - Overconsumption
 - · Jump to autarky at a
 - · Better to smooth than leech
- Costly adjustment ($\kappa > 0$)
 - · Later jump to autarky
- $\kappa > 0$?: More overconsumption?

Illiquid Housing Increases Transfers $t'_p(x'_p, x'_k(x'_p, x_k), h_k(x'_p, x_k))$

- Without altruism ($\eta = 0$)
 - Perfect intertemporal smoothing
- Free adjustment ($\kappa = 0$)
 - Overconsumption
 - · Jump to autarky at a
 - · Better to smooth than leech
- Costly adjustment ($\kappa > 0$)
 - Later jump to autarky
- $\kappa > 0$?: More overconsumption?
 - Transfers increasing in wealth $x_k + t_p$
- Illiquid housing: Expenditure commitments

Black-White Homeownership Gap • Back

	White			Black		
Moment	Data	Altr	No Altr.	Data	Altr.	No Altr.
Targeted Moments						
Median Wealth (25-44)	32.99	26.76	47.02	3.70	20.38	21.98
Median Wealth (55-74)	265.40	227.86	233.34	39.26	105.12	98.47
Owner (25-44)	0.54	0.52	0.37	0.28	0.28	0.23
Rent / Income (25-44)	0.22	0.20	0.19	0.24	0.25	0.25
Age First Own (25-44)	31.94	32.56	36.73	34.87	36.02	37.40
LTV at Purchase (25-44)	0.69	0.67	0.49	0.57	0.42	0.37
Parent Transfers (55-74)	0.40	0.47	0.00	0.21	0.20	0.00
Transfers Purchase (25-44)	0.45	0.45	0.00	0.20	0.06	0.00
Non-Targeted Moments						
Parent Wealth Gradient	1.79	2.49	1.28	2.91	2.23	1.43
Owner (25-73)	0.70	0.67	0.62	0.44	0.41	0.37
Wealth Purchase (25-44)	37.33	42.36	69.57	16.19	80.81	86.94
Mortgage (25-44)	147.57	124.63	62.98	107.15	59.05	42.17

48

Preferences and Initial Conditions

Preferences

$$u(c,h) = \frac{\left(c^{1-\phi}g(h)^{\phi}\right)^{1-\gamma} - 1}{1-\gamma}$$
$$g(h) = \begin{cases} h_r & \text{if } h = h_r, \\ \chi h_o & \text{if } h = h_o. \end{cases}$$

Preferences and Initial Conditions

Preferences

$$u(c,h) = \frac{\left(c^{1-\phi}g(h)^{\phi}\right)^{1-\gamma} - 1}{1-\gamma}$$
$$g(h) = \begin{cases} h_r & \text{if } h = h_r, \\ \chi h_o & \text{if } h = h_o. \end{cases}$$

Intergenerational Correlations: Initial Conditions

- Initial wealth and productivity $x_{25}, y_{25} \sim F(x_{53}, y_{53})$
 - Depends on parent's states when they are 53
- Captures inter-generational correlations in income and wealth

