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Abstract

Low-income and Black households are less likely to own bank accounts and visit bank branches
than high-income and White households. We assess whether unequal bank access can explain why.
We develop a measure of bank access based on the locations of bank branches and consumer trips to
those branches from mobile device data. Residents have better bank access if branches are located
closer to them or if those branches have superior qualities that attract more visitors (like better loan
rates or customer service). We find no evidence that low-income communities experience a lack of
access, implying that their lower branch use is plausibly due to lower demand for banks. But in
Black communities, a lack of access explains the entire drop off in branch use. For residents of these
areas, weaker access is not from having lower quality branches, but from branches being located
farther away from them. The results highlight areas of the country that would benefit the most from
public policies that expand access to banking.
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1 Introduction

The benefits of bank account ownership and use are well documented. They include improved

access to credit (Fitzpatrick 2015), higher subjective well being (Prina 2015), greater liquid savings

(Agarwal, Alok, Ghosh, Ghosh, Piskorski, and Seru 2017), and reduced reliance on costly payday

lending (Melzer 2018). The mere exposure to local bank branches causally increases bank participation,

leading to greater wealth accumulation (Célerier and Matray 2019) and enhanced financial literacy

(Brown, Cookson, and Heimer 2019).

And yet, substantial disparities in bank account ownership and use persist in the United States.

According to the 2019 FDIC Survey of Household Use of Banking and Financial Services, the share of

Black households that are unbanked is 2.5 times the national average, and the share of low-income

households earning less than $15,000 that are unbanked is over 4 times the national average. Disparities

exist even in the use of bank branches, as both Black and low-income households are significantly

less likely to visit a branch within the previous year compared to White and high-income households.

This lower use of bank branches does not appear to be offset with greater use of online or mobile

banking, as Black and low-income households report greater reliance on bank tellers/ATMs as their

most common banking method.

Among policymakers and in the media, a common argument to explain these disparities is a lack

of bank access (Friedline and Despard 2016; Dahl and Franke 2017; Davidson 2018). This reasoning has

motivated policy proposals that seek to increase access, like investment in community development

banks (Ellwood and Patel 2018) or the expansion of U.S. postal banking (Baradaran 2013; Warren 2014;

Johnson 2017; Gillibrand 2021; Sanders 2021). But demand-related factors, such as low cash savings or

distrust in banks, are equally reasonable explanations. Existing research has struggled to convincingly

control for these demand-related factors, so as to isolate the extent to which weak access explains

continuing disparities in U.S. bank participation.

In this paper, we implement a research design that separates out the impact of access on household

use of bank branches. The design relies on a rich panel of consumer travel patterns between home

Census block groups and bank branches throughout the United States, originating from mobile device

data. We find no evidence that low-income communities experience a lack of bank access, which implies

that lower demand for banks explains their lower use of bank branches. But in Black communities,

a lack of access explains their entire drop off in branch use. These results reveal which parts of the

country would benefit the most from policies that increase access to banks.

In the first part of the article, we estimate our measure of access based on the mobile device data.
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We represent the consumer movements between home block groups and bank branches with a spatial

gravity equation, which consists of block group × time fixed effects, bank branch × time fixed effects,

and the distances between pairs of block groups and branches. This approach takes advantage of the

network of trips that links block group residents to multiple branches. By using block group fixed

effects, we compare how residents of the same block group visit different branches by varying amounts.

The extent to which this within block group comparison fully absorbs the block group residents’

demand for branch services, the estimated differences between block groups in overall branch use can

plausibly be attributed to differential access.1

The gravity equation not only allows us to control for demand-related factors, but it also generates

a local measure of bank access. One can break apart a block group’s expected total number of branch

goers into one part due to “demand” (the exponentiated block group fixed effect) multiplied by a

second part due to “access.” We use “demand” informally to capture all resident characteristics that

contribute to visiting any bank branch (e.g., average wealth, income, financial sophistication, trust

in banks, flexibility in time). The “access” part is an index of bank branches available to residents of

the block group. Each branch in a block group’s index is represented by the branch’s attributes, as

captured by the branch’s fixed effect, and the transportation costs that block group residents must bear

to travel to the branch. A branch’s fixed effect proxies for its “quality,” capturing all characteristics of

the branch that make it a destination for residents of any block group in the period (e.g., the branch

having better deposit or loan rates, higher staff attentiveness, or an efficient drive-through ATM).

By this index, residents have better bank access if branches are located closer or if the nearest

branches have superior attributes that attract more visitors. Unlike pure supply-side measures of

access, such as the number of branches per capita, which reveal only the opportunity set available to

consumers, this measure of access embodies consumers’ actual choices. The measure is conceptually

related to indices in the economic geography and trade literature that describe an exporting country’s

access to the importing markets of other countries (e.g., Harris 1954; Head and Mayer 2004; Redding

and Venables 2004; Hanson 2005; De Sousa, Mayer, and Zignago 2012; and Donaldson and Hornbeck

2016).

While the mobile device data on consumer flows are critical to estimate the local measure of bank

access, the data are subject to differential privacy methods, which try to shield the personal identifiable

information of individuals from becoming public. Noise is added to the number of visitors from a

block group to a branch, and these visitor counts are either truncated or censored if the number is

1Using block group fixed effects to control for consumer demand is akin to using firm fixed effects to absorb credit
demand shocks when estimating the consequences of credit supply shocks, in the style of Khwaja and Mian (2008).
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too low. Because of these distortions, an OLS regression of the gravity equation would render biased

estimates and contaminate the measure of access.

To account for the differential privacy, we instead use the Method of Simulated Moments (MSM) to

estimate the gravity equation. Standard MSM is straightforward to implement in models with no or

few fixed effects (McFadden 1989). But the gravity equation has hundreds of thousands of fixed effects

across block groups and branches, which complicates the procedure. To handle such a large volume of

fixed effects, we introduce an econometric method to estimate the gravity equation. The method can be

implemented in other empirical settings involving high-dimensional fixed effects in MSM estimation.

We run the MSM procedure month-by-month to account for dynamic branch entry and exit.

The monthly point estimates of the gravity coefficient range from -1.45 to -1.25, implying that, if a

representative branch is located 1% farther away from a representative block group, the expected

number of residents from that block group who travel to that branch will drop by around 1.25% to

1.45% per month. This range is in line with the gravity coefficient estimate of -1.05 that Agarwal,

Jensen, and Monte (2018) find for the average out-of-home purchase, where the authors evaluate how

consumer expenditures in nonfinancial sectors vary with distances from merchants.

In the second part of the article, we use the gravity model estimates to uncover how bank access

varies across the country. We document three geographic patterns: First, access varies substantially

across regions. Residents of the eastern shores of New England and the Mid-Atlantic experience the

highest access nationwide, whereas residents of the Deep South observe considerably weaker access.

Second, the most pronounced differences in access are between urban and rural areas. Residents of

big cities like Boston, Miami, Houston, and Minneapolis observe roughly three times higher access

to banks than residents of rural towns. Third, even within a town or city, bank access varies greatly.

A population-weighted block-group-level regression of bank access on Census tract fixed effects

estimates that just 26.2% of cross block-group variance in access is within Census tracts. For example,

in New York City, access is highest in Midtown Manhattan and lowest in the Bronx, and even within

each borough there is large variation. Likewise, around Chicago, residents of the North side experience

better access than residents of the South side; and in Greater Los Angeles, the neighborhoods of Beverly

Hills and the Hollywood area observe meaningfully better access than parts south of the city, such as

Compton and Long Beach.

After examining geographic variation in bank access, we evaluate how access covaries with the

household incomes and racial makeups of local communities. We compute national statistics, but

we also zero in on large Metropolitan core areas, because these parts of the country contain the

majority of U.S. households, and they have Black population shares that resemble the national average.
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Understanding bank access in these big cities is essential to explaining why Black households use

branches less.

With controls for the racial and age population shares of block groups, we find that residents

of low-income block groups both cross-country and in Metro cores experience better bank access

than residents of high-income block groups. The better access can arise from either low-income

residents living relatively closer to branches or visiting branches of higher quality. To determine which

channel explains the result, we split access into two components such that their product equals the

original measure. The first component equalizes the quality of all branches so that any variation in the

component across block groups is entirely driven by residents’ proximity to branches. The second

component normalizes the total transportation costs of each block group’s residents so that variation

in the component is entirely driven by differences in the weighted average quality of branches that

residents experience, where closer branches to the block group are given higher weights. Performing

this separation, we find that the higher access in low-income communities is completely due to better

branch proximity and not quality. We find no significant difference in the average quality of branches

that residents of low-income and high-income areas experience.

Unlike residents of low-income block groups who observe relatively better bank access, we find

that residents of block groups with high Black population shares experience worse access than residents

living in block groups with high White population shares. This finding controls for a block group’s

median household income and the population shares of its residents’ ages. Splitting access into the

two components like before reveals that lower branch proximity is the reason behind the worse

access. Residents of areas with high Black population shares experience better average branch quality

compared to residents of areas with high White population shares. But because branches are located

farther away from Black communities, those communities bear larger transportation costs to reach any

branch. These costs more than offset the advantage of having the closest branches be of higher quality,

leading to lower overall bank access.

In the third part of the article, we isolate the extent to which access or demand explains the

observed racial and income disparities in branch use. We start by regressing the natural logarithm of

the expected total number of branch goers per block group, as estimated from the gravity equation,

onto demographic characteristics of the block group residents. Controlling for block group racial and

age shares, we find that every doubling in a block group’s median household income is associated

with 15.5 percent more branch goers per month, both nationwide and in Metro cores. This income

gradient in branch use is large, as the unconditional likelihood of a resident in the data visiting a bank

branch during the year is about 72 percentage points. Examining differences by race, and controlling
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for median household income and age shares, we find that a block group with a 100% Black population

share observes roughly 5.6 percent fewer branch goers per month relative to a block group with a

100% White population share. In Metro cores, this Black-White gap in branch use is slightly smaller at

3.9 percent per month.

We next decompose the income gradient and the Black-White gap in branch use into constituent

parts due to access and demand. Doing so simply requires regressing the natural logarithm of each

block group’s measure of access and the block group’s estimated fixed effect onto the same set of

block-group-level characteristics that we use to evaluate each block group’s log expected total number

of branch goers. By construction from the gravity equation, the estimated coefficients from the three

regressions satisfy an identity along any demographic attribute. The identity separates the elasticity of

branch use with respect to the demographic attribute into two pieces: the elasticity of access and the

elasticity of demand.

Performing this decomposition, we find that the 15.5 percent income gradient in branch use

nationwide consists of a -7.5 percent income gradient in access and a +23.0 percent income gradient in

demand. Thus, while residents of low-income block groups have relatively better access to banks, they

exhibit a lower propensity to visit any bank branch, which translates overall into lower branch use

compared to residents of high-income block groups. The Black-White gap in branch use nationwide has

a different explanation. Black communities exhibit no robust statistical difference in their demand for

branch services nationwide compared to White communities. And yet, residents of Black communities

visit branches less, which implies that the 5.6 percent Black-White gap in branch use cross-country is

entirely due to weaker access.

In Metro cores, the decomposition by income reveals a similar pattern as the national estimates.

Residents of low-income block groups experience better access but weaker demand, which combine

overall into a lower use of branch services compared to residents of high-income block groups.

Performing the decomposition by race, we find that residents of Black communities in big cities exhibit

higher demand for branches compared to residents of White communities. But this higher demand is

more than offset by weaker bank access, leading Black communities in big cities to use branches less.

At the end of the article, we discuss several policy implications of our results.

Related Literature. This article relates to two major literatures. The first is the array of work that

investigates financial access, financial use, and their joint relation to inequality. See Claessens (2006)

and Claessens and Perotti (2007) for surveys. Much of this research has examined differences in access

and use around the globe. Beck, Demirguc-Kunt, and Peria (2007) develop indicators of banking sector
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outreach across 98 countries (e.g., the number of ATMs per capita, or the number of loans per capita).

Beck, Demirgüç-Kunt, and Martinez Peria (2008) measure bank access barriers (e.g., minimum account

and loan balances, or account fees) across 62 countries. See also Washington (2006), Blank (2008), Ho

and Ishii (2011), and Goodstein and Rhine (2017), who investigate how improvements in various

measures of bank access affect bank use in the United States. Yogo, Whitten, and Cox (2022) examine

U.S. bank and retirement account participation by geography, income, and race using tax records.

Nguyen (2019) studies how branch closings affect local small business access to credit. An advantage

of this article’s access measure is that it encapsulates the equilibrium choices of individual consumers,

rather than reflecting only survey responses or being constructed from supply-side factors alone, such

as the local branch density or the availability of low cost accounts. And while the causal benefits of

increasing access are well established, less is known about the extent to which prevailing inequities

in access sustain disparities in bank use. Our analysis advances this body of work with a research

approach that isolates the effects of access on the use of bank branches.

Second, the article relates to the large literature in spatial economics on commuting flows and the

arrangement of economic activity. See Redding (2013) and Redding and Rossi-Hansberg (2017) for

surveys. Much of this work has focused on either firm or household location decisions (e.g., Lucas

and Rossi-Hansberg 2002; Allen and Arkolakis 2014; Ahlfeldt, Redding, Sturm, and Wolf 2015) or

agglomeration effects (e.g., Dekle and Eaton 1999; Rosenthal and Strange 2004). Recently, many articles

in this literature have taken advantage of mobile device data to answer economic questions. An early

example is Chen and Rohla (2018), who examine how political partisanship affects time spent together

during Thanksgiving dinner. Athey, Blei, Donnelly, Ruiz, and Schmidt (2018) study consumer choice of

restaurant dining. Chen, Haggag, Pope, and Rohla (2019) look at racial disparities in vote waiting times.

Athey, Ferguson, Gentzkow, and Schmidt (2021) develop a measure of segregation based on where

people visit over the course of a day. See also Büchel, Ehrlich, Puga, and Viladecans-Marsal (2020);

Miyauchi, Nakajima, and Redding (2021); Kreindler and Miyauchi (2022); and Atkin, Chen, and Popov

(2022). Many researchers have also used mobile device data to explore topics related to the Covid-19

pandemic (e.g., Coven, Gupta, and Yao Forthcoming; Almagro, Coven, Gupta, and Orane-Hutchinson

2021; Goolsbee and Syverson 2021; Couture, Dingel, Green, Handbury, and Williams 2022; and Chen,

Chevalier, and Long 2021). We complement this literature by using micro-level observations of travel

behaviors to quantify spatial patterns and transportation costs in banking activity.

The econometric method we propose in the article also relates to estimation procedures used

in the spatial economics literature. Novel methods to handle econometric issues when estimating

gravity models have been proposed before. In trade, Eaton and Tamura (1994); Helpman, Melitz, and
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Rubinstein (2008); and Westerlund and Wilhelmsson (2011) suggest different methods to account for

zero trade flows, including Tobit procedures, two-step Heckman procedures, and Poisson fixed-effects

estimators. Recognizing potential biases introduced when log-linearizing a gravity equation, Silva and

Tenreyro (2006) suggest a Poisson pseudo-maximum-likelihood procedure. Extensions of this estimator

can handle a large number of fixed effects (Larch, Wanner, Yotov, and Zylkin 2019). Dingel and Tintelnot

(2021) introduce a quantitative spatial model and estimation procedure for “granular” environments,

where there is a finite number of individuals whose idiosyncratic choices impact equilibrium outcomes.

But when the data in a gravity model’s estimation is subject to differential privacy and many fixed

effects require estimation, a different econometric approach is warranted. The article provides a way

to implement the Method of Simulated Moments when many fixed effects require identification.

Even in areas outside spatial economics, differential privacy algorithms are masking more economic

data sets over time, including the 2020 Census tables and American Community Survey microdata

(Ruggles, Fitch, Magnuson, and Schroeder 2019), transactions data (Karger and Rajan 2020), and health

records (Allen, Bavitz, Crosas, Gaboardi, Hay, Honaker, King, Korolova, Mironov, Phelan, Vadhan, and

Wu 2020). The article’s econometric method can be helpful in estimating models in other economic

environments that rely on privacy-preserving datasets. Finally, the article’s conceptual measure of

local access, empirically estimated using mobile device data, can be applied to other markets where

physical retail locations matter, such as in grocery store and healthcare markets.

Outline. The article proceeds as follows. Section 2 provides background information on bank use

in the United States. Section 3 presents a spatial model that serves as a conceptual framework for

our measure of bank access. Section 4 describes the mobile device data we use to estimate the access

measure. Section 5 details the econometric method for estimation. Section 6 analyzes variation in bank

access by geography and demographic characteristics of local areas. Section 7 decomposes racial and

income disparities in branch use by differences in access versus demand. Section 8 discusses policy

implications of the results. Section 9 concludes.

2 Background on Bank Use in America

Every two years in June, the FDIC’s Survey of Household Use of Banking and Financial Services

is administered alongside the U.S. Census Bureau’s Current Population Survey, which covers a

representative sample of U.S. households. The FDIC survey queries both banked and unbanked

households, and the most recent survey collected data from almost 33,000 respondents.
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Our access measure is based on bank branches, but has the growth of online and mobile banking

spoiled branches as important indicators of financial access? In Online Appendix B, we present

evidence from the survey suggesting not. Roughly 81% of respondents answered having visited a

branch in the past 12 months, and just over 29.7% reported having visited a branch 10 or more times.

Traveling to a branch is the primary (i.e., most common) method of accessing bank accounts for about

25% of respondents. Mobile banking is more frequently cited as a primary method of use (31.4%) for

banked households, but even in this group of respondents, 81.2% stated visiting a branch over the past

year and about 1 in 5 in that group visited ten or more times.

From the survey, we also observe significant demographic variation in branch use. Controlling for

age and race in a multivariate linear probability regression, we find that respondents in the highest

income bracket ($75, 000+) are roughly 22% more likely to reply visiting a branch in the previous year

than respondents in the lowest income bracket (< $15, 000). A substantial Black-White gap in reported

branch use is also present. Controlling for reported income and age, we find that Black respondents

are 10% less likely to answer having visited a branch in the past year than White respondents. Probit

regressions provide similar estimates.

Focusing on the primary method of bank account access, we find that low-income and Black

households do not appear to make up their lesser branch use with greater use of alternative banking

methods like online or mobile banking. Both low income and Black households indicate relying on

mobile/online banking less and bank branches more as their most common access method. Controlling

for age and race, we find that respondents in the lowest income bracket are roughly 31% less likely

than those in the highest income bracket to say that mobile or online bank is their primary method to

access their bank accounts. Similarly, controlling for income and age, we find that Black respondents

are about 6.6% less likely than White respondents to call mobile or online banking their primary access

method.

In addition to the FDIC Survey, the Survey of Consumer Finances (SCF) also suggests that branches

remain subjectively important to households in their use of banking services. According to the 2019

SCF, the locations of branches is cited most frequently as the most important reason for choosing an

institution for their main checking account (43% of respondents), which is the most cited reason by far.

Despite advances in mobile and online banking, the proportion of respondents citing branch locations

as their most important reason has remained about the same since 1989 (between 43% and 49%).

Overall, bank branches remain integral to the financial lives of most U.S. households, and from

survey evidence, we observe disparities in their use by both race and income. We turn next to providing

a conceptual framework for household use of bank branches, which informs our measure of bank
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access.

3 A Conceptual Framework for Bank Access

A continuum of residents choose destinations to visit from their home Census block groups per

time period. Each resident r lives in one block group i ∈ G. Bank branches are located across the

country, and each branch is indexed by j ∈ Bt, where the set of branches can vary over time from store

openings and closings.

In every period, a resident chooses which single bank branch to visit so as to maximize utility.

Residents may also choose not to visit a branch, either remaining home or visiting another point-of-

interest. We index this outside option choice by j = 0. The indirect utility of resident r living in home

block group i and visiting branch j at time t is

Urjt =
zrjtΛ jt

δi j
. (1)

The term Λ jt is an index of all attributes of branch j that make it a destination for residents of any

block group at time t (e.g., the branch having attractive deposit or loan rates, higher customer service

quality, or a wider variety of products). The term zrjt is an idiosyncratic, unobserved error that captures

individual differences in residents’ personal preferences for banking at branch j (e.g., favoring Chase

over Wells Fargo, relishing the branch’s proximity to the children’s daycare, or appreciating the

building’s historic architecture). Finally, the term δi j is an iceberg traveling cost that is defined as

δi j = dκi j, (2)

where di j is the distance between home block group i and branch j, and κ > 1 controls the scale of the

traveling costs.

To derive mathematically convenient functional forms for the branch choice behavior of the

population, we follow McFadden (1974), Eaton and Kortum (2002), and Ahlfeldt et al. (2015) by

assuming that the idiosyncratic component of utility zrjt is drawn from an independent Fréchet

distribution:

F
(
zrjt

)
= e−H jtz−εrjt , H jt > 0, ε > 1. (3)

The branch-specific parameter H jt > 0 influences the mean of the distribution. A larger H jt implies

that a high utility draw for branch j is more likely among residents of any block group. The term

ε > 1 governs the heterogeneity of idiosyncratic utility. A smaller ε implies that residents are more
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heterogeneous in their preferences for branches.2

Substituting the expression for Urjt into the distribution of idiosyncratic tastes in Eq. (3), one can

observe that residents of block group i at time t are presented with a distribution of utility across

branches, Gi jt (u) = Pr
[
Urjt ≤ u

]
= F

(
uδi j/Λ jt

)
, or

Gi jt (u) = e
−

[
H jt

(
Λ jt
δi j

)ε]
u−ε
. (4)

We normalize the value from the outside point-of-interest H0tΛ
ε
0tδ
−ε
i0 = 1. Each resident chooses a

location to visit that yields the maximum utility. Hence, the distribution of utility across all possible

locations that a resident would actually visit is

Git (u) = ΠBt
j=0Gi jt (u) . (5)

Inserting Eq. (4) into Eq. (5), one obtains the utility distribution:

Git (u) = e−(1+Φit)u−ε , (6)

where the parameter Φit of block group i’s utility distribution is

Φit =
∑
j∈Bt

H jtΛ
ε
jtd
−κε
i j . (7)

Eq. (7) is the theoretical foundation of our measure of bank access. It summarizes information

about the set of branches available to residents of a block group per time period. Given its form, Φit can

be interpreted as an attribute-adjusted branch index that is unique to each block group. Each branch

in a block group’s index is represented by the average idiosyncratic utility
(
H jt

)
that residents of the

block group assign to the branch’s attributes
(
Λ jt

)
and the branch’s distance

(
di j

)
away. The impact

of distance is influenced by the scale of traveling costs (κ) and the substitutability between branches

(ε). While all branches in the country are available to all residents to visit, the costs of traveling to

those branches vary by block group. Local areas have higher access if branches are relatively closer,

especially branches with better attributes.

The object Φit is conceptually related to what some in the economic geography and trade literature

have described as an exporting country’s “access” to the importing markets of other countries (e.g.,

Harris 1954; Head and Mayer 2004; Redding and Venables 2004; Hanson 2005; and De Sousa et al.

2012). Donaldson and Hornbeck (2016) use a similar measure when estimating how U.S. railroad

2The parameter ε plays a role like the elasticity of substitution between bank branches in a model where residents have
CES preferences over bank services from all branches. A smaller ε is akin to branches being less substitutable, which implies
that residents find it worthwhile to travel to a branch despite resistance imposed by the geographic barrier δi j.
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expansion in the 19th century affected a county’s “market access” to trade with other areas. In our

environment, we treat Φit as a local measure of residents’ access to banks.3

In addition to providing a measure of access, the utility distribution also generates a gravity

equation in visits between home block groups and bank branches. The share πi jt of residents living in

block group i who visit branch j at time t is

πi jt =
H jtΛ

ε
jtd
−κε
i j

1 + Φit
. (8)

The visitor share depends on the characteristics of the branch
(
Λ jt

)
, the average utility draw of the

branch
(
H jt

)
, and the “bilateral resistance” derived from the intervening transportation costs

(
d−κεi j

)
.

Other things equal, a resident is more likely to visit a branch if it has superior attributes, delivers

higher average idiosyncratic utility, or is less costly to reach. In the denominator, Φit plays the role

of “multilateral resistance,” which affects residents’ visitation to all possible branches. The probability

that residents of a block group in, say, Palo Alto, visit a nearby Chase branch depends not only on the

benefits of the branch and the costs of getting there, but also on the benefits and costs of visiting all

other available branches.4

Eq. (8) offers a conceptual interpretation of the empirical gravity equation we employ to model

consumer travel flows from block groups to bank branches. Estimates from the gravity equation are

then aggregated to the block-group level to obtain local measures of bank access. We turn next to

describing the microdata we use in the estimation.

4 Data on Branch Visits

We measure consumer travel patterns using mobile device data from SafeGraph between January

2018 and December 2019. The data are monthly and include both branch locations and information

about branch visitors. The SafeGraph data are benefited by elaborate algorithms the company has

developed to determine whether a mobile device visits a particular destination and to pinpoint a mobile

device’s home origin. A visitor is identified by a mobile device, one device is treated as one visitor,

and a device must spend at least 4 minutes at an establishment to qualify as a visitor. Unfortunately,

3While the spatial model implies that residents visit bank branches directly from home, in practice, they might drop by a
branch during lunchtime at work or in the middle of other errands. Unfortunately, the mobile device data we will use in the
estimation does not reveal the exact travel paths of visitors. The access measure is therefore best thought of as capturing
bank access around residents’ home block groups.

4We obtain the gravity relation in Eq. (8) by evaluating:

πi jt = Pr
[
ui jt ≥ max

{
ui jt

}
;∀ j

]
=

∫
∞

0
Πs [Gis (u)] dGi jt (u) du.
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we do not know the demographic attributes of the mobile device owners, nor their home addresses,

nor their duration spent at a branch, nor what they do at the branch. Nevertheless, SafeGraph does

provide the home Census block groups of branch visitors and the associated number of visitors from

each block group. Online Appendix C provides background information on the SafeGraph data and a

detailed explanation of the way we construct our primary sample. Here, we give a summary.5

4.1 Primary Sample

Our primary (core) data set includes bank branches in all 50 states and the District of Columbia.

SafeGraph categorizes businesses by their six-digit NAICS codes. To ensure that we only analyze

depository institutions in the SafeGraph data, we take advantage of information from the FDIC’s 2019

Summary of Deposits (SOD).

In our core sample, we include only businesses in SafeGraph with NAICS codes equal to 522110

(Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies)

whose brands are also listed in the SOD. For example, Wells Fargo & Company and SunTrust Banks,

Inc. are two bank brands with branch locations in the SOD. We therefore include all Wells Fargo and

SunTrust Bank branch locations in SafeGraph. We identify the physical locations of bank branches

from SafeGraph’s geographic coordinates, and not from the SOD’s, as we found that SafeGraph’s

coordinates typically were more accurate.6

Our core sample is confined to bank branches for which SafeGraph has visitor data. Many bank

locations recorded in SafeGraph lack such information, as it is often difficult to attribute mobile

device visits to particular branches. There are two main reasons. First, in dense environments such

as multi-story buildings or shopping malls, SafeGraph might not be confident about the geometric

boundary of a place. Not knowing the boundary makes it awfully difficult to attribute visitors to a

unique place that is part of a shared space. To reduce false attributions, SafeGraph instead allocates

visitors to the larger “parent” space, such as the encompassing mall. Second, and related, a bank

branch might be entirely enclosed indoors within a parent location (i.e., a customer must enter the

parent’s structure to reach the branch). Because mobile device GPS accuracy deteriorates severely

within indoor structures, SafeGraph is reluctant to assign visitors to an enclosed branch. Instead, those

5SafeGraph asks all researchers who use the company’s data to include the disclaimer: “SafeGraph is a data company
that aggregates anonymized location data from numerous applications in order to provide insights about physical places,
via the Placekey Community. To enhance privacy, SafeGraph excludes census block group information if fewer than two
devices visited an establishment in a month from a given census block group.” The documentation to the SafeGraph data is
here: SafeGraph Documentation.

6For most branches, the geographic coordinates in SafeGraph and the SOD matched. When the two sources disagreed, a
Google Maps search of a branch address in the SOD often confirmed that no physical place existed at that address. (The
place’s absence was not due to a branch closing.)
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visitors are aggregated to the level of the parent location. For example, many Woodforest National

Bank branches are enclosed in Walmart Supercenters. (Walmart partners with Woodforest to provide

the retail company’s banking services.) Visitors to these enclosed branches cannot be separated from

visitors to Walmart, and so, these branches are deprived of visitor data.7

The SOD registers 86,374 bank branch locations as of 2019. While SafeGraph can account for 71,468

branches according to our core sample definition (83% coverage), only 51,369 of these places have

visitor data and constitute our core sample. Our core sample thus covers around 60% of bank branches

in the United States. Online Fig. B.1 presents a time-series of the number of branches per month in our

core sample. Per month, the number of recorded branches is fairly stable and averages around 38,000.

4.2 Sampling Bias

Our core sample experiences two types of sampling bias: (i) differential privacy and (ii) sample

selection. We discuss each bias below and describe how we address it.

Differential Privacy. The first bias emerges from SafeGraph’s efforts to preserve user privacy. The

company applies differential privacy methods to avoid identifying people by their home locations.

First, Safegraph adds Laplace noise to all positive counts of visitors to a branch from each home Census

block group of the branch’s visitors. Second, they round each of these block group × branch visitor

counts down to the nearest integer. Third, they drop from the data all rounded visitor counts less than 2.

Fourth, if a rounded visitor count equals 2 or 3, they raise it to 4. These last two data adjustments render

our sample subject to both truncation from below and censoring from below, leading to non-classical

measurement error. Fig. II presents the distribution of the observed (raw) visitor counts, which reveals

both the truncation and censoring. Roughly 84% of the observed visitor counts equal 4, which implies

a substantial amount of data distortion. The distortion also appears to vary by demographic attributes

of residents. For example, in block groups with predominately Black residents (80%+), about 88% of

visitor counts equal 4, whereas in the remaining block groups, about 83% equal 4. We account for

SafeGraph’s differential privacy methods by estimating the gravity equation using the Method of

Simulated Moments. Appendix A details the full procedure, and Section 5 provides a summary.

7Regarding branch openings and closings, if a bank branch closed and SafeGraph were aware of its closure, any visitors
to the building (say, if a new business opened there) would no longer be attributed to the branch. Likewise, if a branch
opened and SafeGraph were aware of it, visitors would start being attributed to the branch. Nevertheless, if SafeGraph is
unaware of a branch’s opening or closing, visitors would be incorrectly attributed and count toward measurement error.
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Sample Selection. The second bias relates to sample selection, as our data on branch visitation

patterns might not be representative of the true population behavior in the U.S. Potential sampling bias

arises from two sources: our set of branches and our set of visitors. To address potential sampling bias

from missing around 40% of U.S. branches, in Section 4.3 we compare the representation of different

demographic groups in the areas covered by our core sample of branches to the areas covered by all

branches in the SOD. Overall, differences in demographic characteristics between the two sets of areas

are precisely estimated, but small.

Regarding our sample of visitors, SafeGraph aggregates data from around 10% of all mobile devices

in the country. We calculate about 30 million unique mobile devices per month on average visiting all

businesses recorded in SafeGraph, and our core sample reports 1.6 million visitors to bank branches

per month on average.8 The 2010 U.S. Census records 217,740 Census block groups, and our core

sample includes 215,686 unique visitor home block groups, implying close to complete coverage of

U.S. local home areas.

Nevertheless, we cannot rule out non-random sampling of mobile devices based on unobserved

characteristics of visitors. As we discuss in more detail in Online Appendix D, we do not know the

precise demographic attributes of an individual bank branch visitor, and instead, we assign attributes

to visitors according to the demographic characteristics of their home Census block groups. The

2019 FDIC Survey reports smartphone ownership rates by household characteristics. Overall, 85.4%

own smartphones, with Black respondents reporting slightly lower rates (81.5%) compared to White

respondents (85.4%). Ownership rates decline to 66.4% among those aged 65+, 63.3% for those earning

less than $15,000 per year, and 75.6% for residents living outside Metropolitan areas. Smartphone

ownership rates are also lower among the unbanked (63.7%) compared to the banked (86.6%). We

likely under sample these groups with lower mobile device ownership rates.

To assess how well the mobile device visitation patterns align with the representative survey

evidence on branch visits, in Online Appendix B.3, we compare the share of households in the 2019

FDIC survey who report having visited a bank branch in the previous 12 months to the share of mobile

devices in SafeGraph that visit branches in the same period. The comparison is by reported household

income of the respondent and median household income of the mobile device’s home block group.

There is a strong resemblance between the two sources, as both reported branch visitor shares from

the FDIC survey and observed branch visitor shares from the mobility data are increasing and concave

8Online Fig. B.1 presents a time-series of the number of branch visitors each month over the sample period. The number
of visitors rises over the sample period, starting from around 900 thousand in January 2018 and ending with 1.85 million in
December 2019. The change could reflect a combination of increasing bank visitation and improving visitor coverage over
time.
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in household income.

Looking at the entire SafeGraph sample, Squire (2019) quantifies the sampling bias in the company’s

mobility data. He documents that the number of devices from SafeGraph’s identified home locations

correlates highly at the county level with 2010 U.S. Census numbers in terms of population counts

(97%), inferred educational attainment (99%), and inferred household income (99%).9

Despite this strong alignment between the Census and SafeGaph at the county level, Thaenraj

(2021) identifies around 1,000 Census block groups in the SafeGraph data that register more devices

residing than there are people. Squire (2019) also discusses this feature of the SafeGraph panel,

and he interprets these outlier Census block groups as most likely representing errors or technical

limits in SafeGraph’s attribution of devices to home block groups. Less extreme misattributions

are also possible, but any misattribution is likely between neighboring block groups with similar

demographics because the SafeGraph representation lines up well at the county level. For robustness,

we weight block-group level regressions in Sections 6 to 7 by 2019 5-year American Community

Survey (ACS) block group population counts. Population weighting down-weights block groups with

disproportionately high mobile devices relative to their Census populations, and up-weights block

groups with disproportionately low mobile devices relative to their populations, so as to make the

visitor sample more representative.

4.3 Descriptive Statistics

Online Table B.1 reports descriptive statistics of our core sample. The typical branch has 40 unique

visitors per month on average, but there is wide dispersion across branches, as the standard deviation

of visitors is over twice as high at 94. For each branch, SafeGraph provides both the median distance

visitors travel to get there and the median time they spend there. On average, the median distance

traveled is 5 miles, but the standard deviation is 16 miles. The median dwell time is 49 minutes on

average, but for half the branches in the sample, the median dwell time is 9 minutes or less. Finally,

of the 36.5 million total mobile devices recorded in our core sample with information on the type of

device, 52% are iOS and 46% are Android.

Online Table B.2 compares demographic characteristics of residents living in the geographic areas

covered by our core sample of branches with those in the areas covered by the full set of branches in

the SOD. Demographic attributes in the table are taken from the 2019 5-year ACS and are averaged

at the Census Bureau’s zip code tabulation area (ZCTA). In ZCTAs having branches in the SOD, the

9Couture et al. (2022) analyze mobile device data from the provider PlaceIQ, and the authors find that it too is broadly
representative of the general population based on assigned household attributes and movement patterns.
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fraction of White households is 80.5%, which aligns closely with the 79.9% share of White households

in ZCTAs having branches in our core sample. The SOD and core sample are also similar according to

the percentage of Black households (9.5% in SOD vs. 10.3% in our core sample) and the percentage of

Hispanic households (10.6% vs. 10.9%). Median household income in areas covered by our sample

is just over $500 (1%) higher on average than median household income in areas covered by the

SOD. Urban areas in our core sample are over-represented by about 3% compared to the SOD, which

coincides with greater smartphone ownership rates in urban over rural areas. The differences in

demographic attributes between the two samples are precisely estimated and significant, but overall,

the economic magnitudes of the differences are small relative to the mean values across areas.

5 Bank Access Estimation

We compute local bank access by estimating a gravity model of consumer flows using the mobile

device data. But SafeGraph’s differential privacy methods would bias any OLS estimation. In this

section, we describe our alternative econometric method and discuss the gravity estimates that enter

the measure of access.

5.1 Econometric Method

We express the gravity equation in number of visitors rather than shares of residents to account

for the differential privacy methods that SafeGraph applies to the visitor counts. Let V∗i jt be the true

number of visitors from block group i to branch j in period t that SafeGraph observes, and let Rit

denote the number of residents of home block group i at time t. The true number of visitors can be

expressed as:

V∗i jt = πi jtRit, (9)

where πi jt is the share of block group i’s residents visiting branch j at time t. Let Li jt denote the Laplace

noise that SafeGraph adds to V∗i jt to protect user privacy. Noise is added only if SafeGraph observes

a visitor (i.e., V∗i jt > 0). The noise Li jt ∼ Laplace (0, b), where b is the scale of the distribution, and

SafeGraph informed us that b = 10
9 . Let V+

i jt denote the number of visitors after the noise is added,

giving:

V+
i jt = V∗i jt + Li jt. (10)

Let bV+
i jtc denote the integer floor to which SafeGraph rounds the noisy visitor count. To accommodate

SafeGraph’s truncation and censoring, we denote zi jt as an indicator for whether a block group ×
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branch visitor count is present in the sample. The selection equation is

zi jt =


1

0

if bV+
i jtc ≥ 2,

otherwise.
(11)

Let Vi jt denote the visitor count observed in the sample, subject to SafeGraph’s censoring. The

observation equation is

Vi jt = max
{
4, bV+

i jtc
}
, (12)

To estimate the gravity equation, we use the Method of Simulated Moments (MSM), relying on

Eqs. (9) to (12). The MSM chooses model parameters to make the simulated model moments match the

data moments as closely as possible. We run the estimation separately per year-month of the sample to

account for branch openings and closings and to evaluate the stability of the estimates over time. A

full description of our procedure is provided in Appendix A, but we provide a brief summary here.10

Specify the data generating process. In the simulations, we specify V∗i jt as Poisson distributed with

mean πi jtRit. We presume a Poission model for the count data rather than an alternative distribution

such as Negative binomial because interpretations of the fixed effects and gravity coefficient are

straightforward and because a Poisson model has been ubiquitous to estimation of gravity models

since Silva and Tenreyro (2006).

Using the gravity equation in Eq. (8) from the conceptual framework to inform πi jt, we express the

true visitor count as following

V∗i jt ∼ Pois
(
exp

(
γit + λ jt − β log Distancei j

))
. (13)

The term γit is a block group × year-month fixed effect that captures all characteristics of block group i

that contribute to residents visiting any branch in year-month t. Informally, it represents factors that

influence a block group’s “demand” for branch services at any location (e.g., average wealth, income,

financial sophistication, trust in banks, flexibility in time). The term λ jt is a branch × year-month fixed

effect that captures all characteristics of branch j that make it a destination for residents of any block

group in year-month t. Informally, it represents factors that contribute to a branch’s “quality” (e.g., the

branch having attractive deposit or loan rates, higher staff attentiveness, or many ATMs that avoid

long customer queues).11

10For textbook treatments of MSM, see Adda and Cooper (2003), Davidson and MacKinnon (2004), and Evans (2018).
11Using origin and destination fixed effects to estimate gravity equations has become standard practice in the trade

literature since Harrigan (1996). See also Fally (2015) for a connection between fixed-effects and structural estimation of
gravity models. Because we have a panel, the cross-sectional fixed effects are time-varying.
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The parameter β is the elasticity of visitor flows with respect to distance. From the perspective of

the conceptual framework, β can be interpreted as the product of residents’ traveling cost scale (κ) and

their elasticity of substitution between branches (ε). Distance is measured using the haversine formula,

which accounts for the curvature of the Earth, and it is computed between branches and block groups’

centers of population (see Footnote 18).

Eq. (13) imposes a log-linear relation between visitor counts and distance. Fig. I suggests that this

structure represents the data fairly well. Panel A presents a binned scatter plot of the log number of

visitors from block groups to visited branches by the log distance between the origin and destination,

with the fixed effects removed. A clear negative relation between distance and visitation is visible, and

that relation is nearly linear. The relation does flatten out when the log number of visitors approaches

1.4, but that change corresponds to SafeGraph’s censored value of 4 visitors. When only block group ×

branch pairs exhibiting greater than 4 visitor counts are plotted in Panel B, the linear relation retains

throughout.12

While the observed branch visits reasonably follow a gravity relation in distance, we do not claim

that the relation is causal. It is true that the structural model of Eq. (13) implicitly assumes that the

distances between branches and block groups is exogenous with respect to the parameters
{
γit, λ jt, β

}
.

This exogeneity assumption implies that knowledge of the distribution of distances is not required for

inference of these parameters, and hence, we can validly condition the distribution of visitor counts on

distance. But the distribution of distances is really the distribution of where people choose to live within

block groups and where banks choose to build their branches. We treat these choices as exogenous not

because we believe they satisfy this classification in reality, but because the additional joint modeling

of both residential choices and branch location choices is outside the scope of our investigation. We

tackle the much narrower goal of explaining the discrete choices of branch visitors, taking as given

their home locations and the branch locations in each year-month. Finally, Eq. (13) might omit other

block group × branch variables that influence branch visits (e.g., block-group targeted advertising or

special block-group rates based on soft information). The extent to which these omitted variables have

no predictive value for V∗i jt after conditioning on distance, the parameter estimates will be consistent.

Sample the set of branches. Technically speaking, every possible block group i and branch j pair

should enter Eq. (13). But our sample of over fifty-thousand branches, over two-hundred-thousand

12One might wonder whether driving time is a better measure of travel than distance. Online Table B.8 regresses driving
times from block groups to branches over a random sample of around 1 million block group × branch pairs in our data.
Over the full random sample and parts of the sample associated with different demographic attributes, such as including
only block groups with Black population shares exceeding 80%, the R2 values are very high, ranging from 0.972 to 0.993.
Haversine distance is computationally easier to calculate, and these results suggest that it correlates highly with driving time.
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block groups, altogether spanning twenty-four months, makes it computationally difficult to have all

possible block group × branch pairs enter the gravity model estimation. Instead, we sample branches

per block group using a technique that is similar in spirit to the procedure described in McFadden

(1977) and Davis, Dingel, Monras, and Morales (2019). For each block group, we include the set of

branches actually visited by the block group’s residents in the year-month plus a random subset of all

other alternative branches that could have been visited in the period.13

As we describe in more detail in Appendix A.2, we select the alternative branches using stratified

sampling. We sample in the following manner: In each year-month, alternative branches for each block

group are ranked by their distances away from the block group. We divide the number of alternative

branches by 2,000 and round that value up. We then divide the distribution of ranked branches into

these many quantiles and select one branch from each quantile with equal probability. For example, in

a year-month in which a block group exhibits 38,020 alternative branches, the number of quantiles

(and the number of sampled alternative branches) would be 20. The process implies that, on average,

the random alternative set of branches per block group represents slightly higher than a 0.05% sample

size of all possible alternative branches that residents could have visited. Because we use stratified

sampling, we must apply frequency weights to any variable measured at the block group × branch

level, such as visitor counts or pairwise distances, so as to rebalance the data and make it represent the

target population as closely as possible. Following standard practice, we use frequency weights that

are the reciprocal of the likelihood of being sampled (subject to rounding). A larger sample size of

0.1% did not alter the estimation results.

Rather than using a stratified sampling of branches, we could have just as reasonably sampled

branches uniformly in the style of McFadden (1977) and Davis et al. (2019). But stratifying by distance

ensures that both near and faraway branches have equal chance of being selected, which affords

the gravity model a more complete view of visitation rates by distance. Yet an alternative approach

would be to restrict the set of branches per block group by a distance-based cutoff (e.g., including in

residents’ choice sets only the branches within a 10-mile radius of their block group). But doing so

would contaminate the comparison of block group fixed effects and bank access between areas. For

example, if a block group had twice as many branches within a 10-mile radius than another block

group, the former’s access measure would be twice as high as the latter, all else equal. But actual

branch visitation might be similar between the two block groups. (Just because branch supply doubles

does not mean visits double.) If so, the estimated fixed effect of the block group with more branches
13We say “similar in spirit” because, while McFadden (1977) and Davis et al. (2019) implement either uniform or stratified

sampling of the set of available alternatives, consumers’ choice processes in those articles obey the multinomial logit model,
unlike here.
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would mechanically have to lower to equalize visitation. It is important that the sets of branches

available to each block group are sampled in the same manner. Finally, including all branches in the

choice sets of residents allows us to uniquely pin down the branch fixed effects using the SafeGraph

data, and we discuss how momentarily.

Simulate the visitor counts. We simulate visitor counts according to Eq. (13) and apply the differential

privacy methods represented in Eqs. (10) to (12). The simulation process differs between the
(
i, j

)
pairs

with positive observed visitor counts and those with 0 observed visitor counts from the stratified

sampling. For the pairs with positive visitor counts, we draw Poisson random variables with distinct

means given in Eq. (13). We then (i) add a Laplace draw to all non-zero true visitor counts to form a

“noisy” block group × branch visitor count, (ii) round each noisy visitor count down to the nearest

integer, (iii) make 0 all noisy visitor counts below 2, and (iv) replace all noisy visitor counts that equal

2 or 3 with 4.

For the
(
i, j

)
pairs arising from the stratified sampling, we do not draw random variables in the

simulation. If these visitor counts were randomly drawn, they would have disproportionate impact

on any computed moments because of the high frequency weights that would multiply them. Noise

from the simulation would be amplified and make the estimation unstable. In other words, there is a

peso problem. Rather than randomly drawing these pairs of visitor counts, we construct their implied

empirical probability distribution given the parameter estimates. If an infinite number of observations

were in fact simulated, their distribution would coincide with this constructed empirical distribution.14

That empirical distribution is a truncated and censored version of a Poisson probability mass

function per Eq. (13) plus a Laplace distribution with mean 0 and scale 10/9. Because the Laplace

noise is added after the Poisson draw, this empirical distribution can be thought of as a truncated

and censored Laplace distribution whose parameter location (mean) is the realization of the Poission

draw. We construct 7 components of the empirical distribution: (i)-(ii) the probability that the visitor

count equals 0, as well as exceeds 0; (iii)-(iv) the probability that the visitor count equals 4, as well as

exceeds 4; (v) the expected visitor count; and (vi)-(vii) the expected natural logarithm of visitor counts,

conditional on visitor counts exceeding 0, as well as exceeding 4. For more details, see Appendix A.4.

14Notice that we cannot apply this approach to the set of block group × branch pairs with positive visitor counts because
each pair in that set is drawn from a distinct distribution, due, in part, to the block group- and branch-specific fixed effects.
For the pairs with positive observed visitor counts, we simulate draws. However, the pairs in the set from the stratified
sample are meant to represent the remaining population of

(
i, j

)
pairs, which are very high in number. One stratified sampled

observation is meant to represent 2,000 observations from the same distribution. We need only construct the empirical
distribution that these sampled pairs represent.
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Iterate the fixed effects until convergence. The MSM uses the visitor data and the model parameters

to minimize the distance between simulated model moments and data moments. With the very large

number of block groups and branches in our sample, the model of visitor counts in Eq. (13) requires

thousands of fixed effects be estimated. There are simply too many parameters to identify from the

MSM minimization problem alone. Instead, we adopt an iterative routine to identify the fixed effects{
γit, λ jt

}
and let the minimization problem identify β. First, given an estimate of β and the block group

fixed effects,
{
γit

}
, we take advantage of another data field in SafeGraph: the total count of visitors to a

branch, which is unaffected by SafeGraph’s differential privacy methods. Because we presume that

visitors can arrive from any block group, we can uniquely identify each branch’s fixed effect from an

“adding up” condition. Specifically, per branch, we sum the gravity equation across block groups, set

that sum equal to the branch’s total visitor count, and then invert the equation to extract the branch’s

fixed effect. Then, given an estimate of β and the branch fixed effects from the inversions, we repeatedly

update the block group fixed effects,
{
γit

}
, until the differences in the average simulated visitor counts

and average observed visitor counts of each block group i across all branches per year-month t become

sufficiently small. When the number of fixed effects in each dimension is large, as in our setting, the

routine produces consistent estimates. See Appendix A.5 for more details.

Construct the MSM estimator. After both dimensions of fixed effects are identified per estimate of

β, the MSM minimization problem then selects the optimal β estimate that minimizes the weighted

sum of squared errors (expressed in percentage points) between the simulated model moments and

data moments. We use 6 unconditional moments that describe important parts of the distribution of

visitor counts: (i)-(ii) the percent of visitor counts equaling 0 and equaling 4; (iii)-(iv) the average log

distance, when visitor counts equal 0 and equal 4; and (v)-(vi) the OLS coefficient from regressing

log visitor counts onto their associated log distances, when visitor counts equal 0 and equal 4. The

model moments include both the simulated draws from the
(
i, j

)
pairs with positive observed visitor

counts and components of the empirical distribution that represent the stratified sampled pairs. See

Appendix A.6 for more details.

5.2 Gravity Estimates

Fig. II contrasts the distributions of observed “raw” visitor counts to simulated “true” visitor counts

according to the month-by-month MSM estimation of the Poisson model in Eq. (13). The simulated

visitor counts include all positive draws from all simulations across every year-month in the sample

period. Among observed visitor counts across periods, 74.5% equal 4 due to SafeGraph’s truncation
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and censoring, whereas among simulated “true” visitor counts, 72.5% equal 4 or less. The MSM does

a reasonable job spreading out the mass of visitors into the left tail of the distribution that is lost in

the observed data. The two distributions also line up fairly well at values exceeding 4. For instance,

around 4.3% of observed visitor counts equal 15 or more, whereas 5.1% of simulated visitor counts

do. Also displayed in the figure is the distribution of simulated “manipulated” visitor counts, which

are the “true” visitor counts after being manipulated by the differential privacy methods in Eqs. (10)

to (12). The manipulated visitor counts line up fairly well with the observed visitor counts.15

Fig. III compares the observed number of visitors from each Census block group to their expected

counterparts from the simulation. It presents a scatter plot of the log observed number of branch goers

from each block group versus the log expected number of branch goers from the block group based

on the MSM estimates. If SafeGraph applied no differential privacy methods to their data, all dots in

the figure would line up neatly on the red 45◦ line. The single caveat is that the expected number of

visitors might not be whole numbers, whereas the observed number of visitors must be. The censoring

levels off the observed visitor counts at 1.4, which corresponds to 4 visitors. The truncation causes the

observed visitor counts to enter below the expected visitor counts, and the gap between observed

and expected counts is largest for block groups with few branch goers, which are areas where the

truncation has the largest impact. The gap shrinks as the number of branch goers from a block group

increases. In block groups with many branch goers, the observed and expected number of visitors

nearly match. This implies that the MSM generates estimates that fit the data well in regions least

affected by the differential privacy distortions, which one would hope for.

Fig. IV, Panel A presents the MSM estimates from the estimation, along with 95% confidence

intervals. The monthly point estimates of the gravity coefficient range from about -1.25 to -1.45, and

they are quite stable month-to-month. Thus, across the country, if a representative branch is located 1%

farther away from a representative block group, the number of residents from that block group who

travel to that branch will drop by around 1.25-1.45% per month. As for comparison, Agarwal et al.

(2018) estimate a gravity model of consumer expenditures in nonfinancial sectors. They find a gravity

coefficient of -1.05 for the average out-of-home purchase, but they document significant heterogeneity

across sectors, with Food Stores, for example, observing an estimate of -0.85; and Health Services, -0.33.

Fig. IV, Panels B and C present histograms of the estimated Census block group and and bank

15In the estimation, the sum of the observed visitor counts (in black) and simulated “manipulated” visitor counts (in red)
match closely, but that may not seem to be the case from the figure. There, the simulated “manipulated” visitor counts tend
to be smaller than the observed visitor counts. The reason behind this discrepancy is that the figure does not display the
very high number of 0 visitor counts. The simulated “manipulated” visitor counts equaling 0 exceeds enough the observed
counts equaling 0 to equalize the two sums.
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branch fixed effects across all months of the sample period. A block group’s fixed effect can be

interpreted as the average log number of residents from that block group who visit any branch in the

year-month, controlling for branch fixed effects and transportation costs. The bulk of the distribution of

block group fixed effects range from exponentiated values around 0.01 to 20. Similarly, a branch’s fixed

effect can be interpreted as the branch’s average log number of visitors in the year-month, controlling

for visitors’ block group fixed effects and distance. Most of the mass is within a range of exponentated

values between 0.01 and 30. In an unreported regression, roughly 77% of the variation in a branch’s

fixed effect over time can be explained by the branch itself, suggesting that branch quality is fairly

stable over time.

SafeGraph’s differential privacy methods biases any OLS estimation of the gravity equation and

prompts an alternative econometric method like the MSM. But computing the OLS estimates is still

useful to informally assess the magnitude of the bias. To this end, Online Table B.7 presents estimates

from OLS regressions of a fixed-effects gravity equation using the observed visitor counts. We include

a specification in which racial shares are also interacted with distance as independent variables. We

run two sets of regressions: those including all block group × branch pairs and those that limit pairs

with more than 4 branch visitors (which avoid SafeGraph’s censoring).

When all block group × branch pairs are included, the OLS estimate −β̂OLS = −0.053, which is

roughly one-third of the MSM estimate. When racial shares are interacted with distance, −β̂OLS remains

largely unchanged at −0.056. The coefficients on the racial interaction terms are small, which suggests

that the relation between distance and visitor flows is universal across racial groups. But the coefficient

on the interaction term with the Black share is precisely estimated and positive, which is consistent

with residents from block groups with high Black population shares having a lower elasticity of

substitution across branches.

When the sample is limited to block group × branch pairs with greater than 4 branch visitors, the

estimate −β̂OLS nationwide increases to −0.283, which still falls short of the MSM estimate. When racial

shares are added as interaction terms, the OLS estimate of −β̂OLS = −0.258. The sign on the interaction

term with the Black population share is still positive, but no longer precisely estimated. Overall, Online

Table B.7 reveals the downward bias that SafeGraph’s differential privacy methods introduce to an

OLS estimation of the gravity equation, and it stresses the need for the alternative MSM procedure.
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6 Bank Access in the United States

We next examine variation in bank access throughout the United States. Substituting the gravity

equation estimates into the theoretical measure of access from Eq. (7), we obtain an empirical measure

of bank access for residents of block group i in year-month t:

Φ̂it ≡
∑
j∈Bt

exp
(
λ̂ jt

)
d−β̂i j , (14)

where Bt is the entire set of branches in our core sample in the year-month. Because all block group

and branch pairs are included in the estimation from the stratified sampling, every branch has an

estimated fixed effect, and thus, each home block group’s measure of access includes all branches

nationwide in the period.

The relation between bank access and branch visitor counts from the Poisson model of Eq. (13)

bestows economic meaning to the magnitude of Φ̂it. Because the access measure aggregates across all

branches, it can be interpreted as a block group’s expected total number of branch goers per month,

when setting the block group’s fixed effect to zero. The block group fixed effects control for block

group populations, so residents of high-population areas do not mechanically have better access. We

characterize bank access by evaluating its spatial heterogeneity over different parts of the country and

by measuring its association with demographic characteristics of block group residents.

6.1 The Geography of Bank Access

Fig. V illustrates a dot density map of bank access by Census block groups cross-country. Each dot is

positioned at a block group’s center of population. We compute the access estimates month-by-month

per block group, and the figure presents weighted monthly averages, where each month’s weight is its

share of the block group’s total observed branch visitors over the sample period. We construct the

map by grouping block groups into deciles and shading the dots so that higher-ordered colors in the

rainbow gradient (indigo and violet) imply higher bank access and lower-ordered colors (red and

orange) imply lower access. Block groups where no resident was recorded in SafeGraph as having

visited a branch in the sample period are shaded white.

Across the country, three patterns in bank access are apparent. First, substantial variation in access

is observed across regions. The eastern shores of New England and the Mid Atlantic, along with the

upper Midwest experience the highest access nationwide. The Appalachian states, such as parts of

West Virginia, Tennessee, and Kentucky, observe relatively better access than the Deep South, such as

the southern parts of Mississippi and Alabama. A population weighted block-group-level regression
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of bank access on Census region fixed effects suggests that 22.5% of the variation in access is within

regions.

Second, the most pronounced differences in access are between urban and rural areas. Big cities

like Boston, Richmond, Miami, Philadelphia, Houston, and Minneapolis observe substantially higher

bank access than even nearby rural areas. Suburban areas that outlie large metropolitan centers

also observe greater access than rural parts of the country. Online Fig. B.2 compares bank access

by Rural-Urban Commuting Areas (RUCAs), as classified by the U.S. Department of Agriculture’s

Economic Research Service. RUCA codes separate census tracts by their urban/rural status and their

commuting relationships with other areas using Census measures of population density, levels of

urbanization, and daily home-to-work commuting. We categorize each block group into its RUCA

code, and we present in the figure the population-weighted averages of bank access per RUCA. Access

declines monotonically as one transitions from Metropolitan core to Metropolitan suburb, micropolitan

suburb, and rural areas. Bank access in the typical rural area is about two-thirds less than the access in

a typical Metropolitan core.

Third, even within a local area, bank access varies significantly. A population weighted block-

group-level regression of bank access on census tract fixed effects estimates that just 26.2% of cross

block-group variance in access is within census tracts. Fig. VI zeroes in on the four largest cities in

the U.S. by population: New York City, Los Angeles, Chicago, and Houston. Around New York City,

access is highest for residents of Midtown Manhattan and lowest for those living in the Bronx, and

within each borough there is large variation. But relatively speaking, access is high overall for residents

of New York City, such that the numbers in the city’s lowest access neighborhoods are comparable

to those in the highest access neighborhoods of Los Angeles. In Greater Los Angeles, residents of

Beverly Hills and the Hollywood area observe substantially better access than residents living south

of the city, such as in Compton and Long Beach. Residents of neighborhoods in the Palos Verdes

Peninsula, San Fernando, and near the Anaheim Hills observe the lowest access. Residents of the

Palos Verdes Peninsula experience weaker access despite the neighborhood being relatively affluent.

Around Chicago, residents of the North side experience better access than those living in the South

side, an area with a high Black population share. Residents of the Northwest suburbs near Lake Forest

observe the highest access outside the Loop, which also corresponds to neighborhoods with high

White population shares. Finally, in Houston, access is highest for residents living downtown, and

access declines more and more, almost uniformly, as one moves farther away from the city into such

areas as Sugar Land, Brookside Village, and Humble. The radial decline in access moving away from

the downtown area mirrors the general pattern observed nationally in the neighborhoods surrounding
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big cities.16

The heterogeneity in bank access displayed in these four big cities hint that access is correlated

with the income and racial composition of local areas. We turn next to formally evaluating how access

varies with those attributes.

6.2 Bank Access by Demographic Attributes

Because a central focus of our study is answering how bank access and use differs between Black

and White households, we look at national comparisons, but also zero in on parts of the country that

present Black population shares close to the national average. Online Table B.3 provides household

counts and Black shares throughout the U.S. and within each RUCA. The national Black share is 12%.

The commuting areas with Black population shares closest to this national number are Metropolitan

area core (Metro core), having a 15% Black share, and Micropolitan area core (micro core), having a 9%

Black share. Although Metro and micro cores share similar racial shares, Metro cores vastly outnumber

micro cores in household counts (99.5 million vs. 8.5 million), and Metro cores capture roughly 72% of

the 138.9 million total households in the U.S. For this reason, we supplement our national estimates of

bank access with local estimates in Metro cores.

Table I presents weighted OLS regressions of log Φ̂it on demographic attributes of block group

residents. Observations in the regressions are at the level of a home Census block group per year-month

over the core sample period, they are weighted by 2019 5-year ACS block-group population counts,

and standard errors are clustered at the block-group level. Independent variables are population-based

shares from the 2019 5-year ACS. The five racial/ethnic groups used in the regressions are non-Hispanic

Asian, non-Hispanic Black, non-Hispanic White, non-Hispanic Other Races, and Hispanic. In all

specifications, we control for the log number of mobile devices residing in the block group, which

is unaffected by SafeGraph’s differential privacy methods. The coefficients from the table can be

interpreted as the percent change in a block group’s expected number of branch goers per month,

assuming the block group fixed effect is held constant at zero.

Our access measure embodies information about the per-mile cost of travel through the elasticity

parameter β, which we take to be constant nationwide for simplicity. But commuting costs indeed

vary substantially throughout the diverse U.S. landscape. A mile in downtown Chicago is much

16A popular measure of bank access is an area’s density of branches. In Online Table B.9, we regress our access measure
on branch density at both the county and census tract levels. At these geographies, between 44-62% of the variation in access
is explained by density when state fixed effects are included, suggesting that our measure of bank access captures more
information than just supply-side factors. In addition, the coefficient in the regression changes sign from positive to negative
as the landscape enlarges from census tracts to counties, which reveals the importance of measuring access over as narrow a
terrain as possible.
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costlier to traverse in a car, train, or bus than a mile in the surrounding Cook County suburbs.

Because transportation costs might differ even within counties, county fixed effects are insufficient as

controls. To control for variation in traveling times and make the notion of “distance” as comparable

as possible across different types of areas (urban, rural, and suburban), we add RUCA fixed effects to

our specifications in the table.

Column (1) conditions the bank access regressions on median household income and race. Residents

of block groups with higher median household income experience lower bank access. A doubling in a

block group’s median household income is associated with its residents experiencing about 11.0%

weaker access. Residents of block groups with high Black population shares also experience weaker

access. Extrapolating from the coefficients on the racial shares, we estimate that a hypothetical block

group with a 100% Black population share would observe roughly 8.2% fewer branch goers per month

than a comparable block group with a 100% White population share, holding constant the block group

fixed effect at zero.

An important factor that might drive branch visits are differences in financial savvy or technical

sophistication from differences in age or education (Caskey and Peterson 1994; Caskey 1994; Hogarth

and O’Donnell 1997; Hogarth, Anguelov, and Lee 2005; Blank and Barr 2009; Rhine and Greene 2013).

Including income in column (1) already proxies for the permanent component of human capital, but in

column (2), we add age shares. Controlling for age in column (2) still preserves the negative relation

between income and access, though the magnitude is cut to -7.6%. Also controlling for age, we observe

block groups with large Black population shares experiencing weaker access. Extrapolation of the

coefficient implies that a hypothetical block group with a 100% Black population share observes about

5.3% poorer access than a comparable block group with a 100% White population share.

Column (3) restricts the sample to block groups in Metropolitan core areas. There, the negative

coefficients on income and the Black share are sharper. In big cities, a doubling of a block group’s

median household income is associated with its residents observing about 12.6% weaker access, and

the Black-White gap in access is 10.7%. Controlling for age shares in column (4), we find that the

coefficients on income and the Black population share remain negative, though smaller in magnitude

(-8.7% and -6.4%, respectively).

6.3 Explaining Access: Branch Proximity and Branch Quality

The measure of bank access combines information about the “quality” of branches available

to residents and the costs of traveling to those branches. We next evaluate how each component
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contributes to differential access across block groups. Bank access in Eq. (14) can be rewritten as

Φ̂it ≡

∑
j∈Bt

d−β̂i j

︸    ︷︷    ︸
Branch Proximity

×

∑
j∈Bt

πi j exp
(
λ̂ jt

)︸                ︷︷                ︸
Branch Quality

, (15)

where the weights πi j ≡
d−β̂i j∑

j∈Bt d−β̂i j

. Eq. (15) separates access into two components. The first is branch

proximity, measured as the sum of the inverse of the transportation costs that residents would bear to

reach bank branches across the country. It can be interpreted as residents’ hypothetical bank access if

branch quality were equalized across all branches (and normalized to one). The second component

is branch quality, measured as the weighted average quality of branches that residents experience,

where closer branches are assigned higher weight. It can be interpreted as residents’ hypothetical

access if their total transportation costs were normalized to one. (Notice that this normalization does

not equalize transportation costs across block groups; if costs were equalized, average branch quality

would be the same across block groups.)

Columns (5)-(8) of Table I present the coefficients of weighted OLS regressions of these two access

components on block-group median household income, racial shares, and age shares. Columns (5) and

(7) provide nationwide estimates, whereas columns (6) and (8) focus on Metro cores. Nationwide, a

doubling in a block group’s median household income is associated with a 7.6% decline in its residents’

proximity to all bank branches. In Metro cores, the drop in proximity is higher at 8.6%. Looking at

differences in branch quality in columns (7)-(8), we find no statistical difference in the average quality

of branches residents experience in low-income versus high-income communities, both nationwide

and in big cities. Put together, the decomposition reveals that the higher bank access for residents of

low-income block groups is entirely driven by their greater proximity to bank branches and not from

experiencing a higher quality of branches.

Focusing on the racial differences in the two access components, we find that residents of block

groups with high Black population shares experience significantly lower branch proximity. Nationwide,

residents of a block group with a 100% Black share observe 14.3% lower branch proximity compared to

residents of a block group with a 100% White share. In Metro cores, the drop in proximity to branches

for Black communities is 16.8%. However, both nationwide and in Metro cores, residents of block

groups with high Black population shares experience better average branch quality (9.0% higher

quality cross-country and 10.4% higher quality in big cities). This result implies that reduced proximity

to branches, rather than lower quality branches, explains the lower bank access in Black communities.

Put differently, the branches nearest Black communities tend to be of higher average quality, but those
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branches are located relatively farther away from those communities and hence, are more costly to

reach.17

Overall, results from Sections 6.2 to 6.3 show that (1) across the country and in Metro cores, residents

of low-income block groups observe higher bank access, and we find no meaningful difference in

their average quality of branches compared to high-income communities; and (2) residents of areas

with high Black population shares experience weaker bank access, and this weaker access is driven

by bank branches being located relatively farther away from Black communities, rather than these

communities experiencing lower average quality branches.

7 Bank Branch Use: Access versus Demand

Our gravity model takes advantage of the network of consumer flows linking block-group residents

to multiple branches. By using block group fixed effects, it isolates how the unequal distribution of

bank branches explains disparities in household use of those branches, by controlling for block-group

differences in demand for branch services. Since the comparison is across branches for the same block

group, block-group specific demand is absorbed by the block group fixed effect.

As an added benefit, the gravity model in Eq. (13) generates a simple decomposition of branch

visitor counts into two parts. From that equation, the natural logarithm of the expected total number

of residents of block group i who visit any branch in year-month t is

log V̂∗it = log Φ̂it + γ̂it. (16)

Eq. (16) separates a block group’s total count of branch goers into (1) the count if branch demand were

equalized across block groups, plus (2) the count if access instead were equalized. This decomposition

thus separates the part of branch use that is due to access versus demand.

We can also evaluate the extent to which variation in branch use across population groups can be

attributed to differences in each component. An OLS projection of log V̂∗it onto a vector Xi of resident

characteristics at the block group level gives

log V̂∗it = XiθV + εV,it. (17)

Similar projections of both the access measure and the estimated block-group × year-month fixed

17If the coefficients on the Black population share in columns (7) and (8) registered the opposite sign, bank access would
have been doubly bad for Black communities. Not only would branches have been located farther away from them, but their
nearest branches would be of lower quality.
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effects onto Xi produce

log Φ̂it = XiθΦ + εΦ,it, (18)

γ̂it = Xiθγ + εγ,it. (19)

Along any demographic attribute x, the estimated coefficients from Eqs. (17) to (18) satisfy the identity:

θ̂V,x ≡ θ̂Φ,x + θ̂γ,x, (20)

which separates the elasticity of branch use with respect to the demographic attribute into two

constituent parts: the elasticity of bank access, θ̂Φ,x, and the elasticity of demand for branch services,

θ̂γ,x.

We begin the empirical analysis of this section by running regressions of the sort in Eq. (17) and

Eq. (19). Regressions of the sort in Eq. (18) were presented earlier in Section 6.2. We then use the

estimates to decompose disparities in branch use into parts explained by differential bank access and

demand for branch services.

7.1 Bank Branch Use

Table II presents weighted OLS regressions of bank branch visitors by demographic attributes,

both nationwide and in Metro cores. Like in the access regressions of Table I, observations are at the

level of a home Census block group per year-month over the sample period, they are weighted by 2019

5-year ACS block-group population counts, and standard errors are clustered at the block-group level.

In columns (1)-(4), the dependent variable is log V̂∗it ≡ log
∑

j V̂∗i jt, where V̂∗i jt is the predicted mean

of V∗i jt in Eq. (13) and β varies by month. Column (1) reports coefficients on median household income

and racial shares, with year-month, county, and RUCA fixed effects. High income block groups have

more expected bank branch goers per month (about 18.6% more for every doubling in the block group’s

median household income). Block groups with high Black population shares have fewer expected

branch goers compared to block groups with high White population shares. A hypothetical block

group with a 100% Black share would have roughly 4.1% fewer branch goers per month relative to a

comparable block group with a 100% White share. Controlling for block group age shares in column

(2), we find that the coefficient on income drops slightly (0.155), but the coefficient on the Black share is

more sharply negative (-0.056). Extrapolations of the coefficient suggest that a block group with a 100%

Black population share would expect 5.6% fewer branch visitors per month relative to a comparable

block group with a 100% White share.
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Moving away from nationwide estimates, we next focus on Metro core areas in columns (3) and (4).

Having controls for age shares in column (4), we find that the positive income gradient in branch use

in big cities remains the same as the cross-country estimate (0.155). The magnitude of the coefficient

on the Black population share is -0.039, which is slightly narrower than the national estimate. Thus, in

big cities, we detect a Black-White gap in branch use of roughly 3.9% per month.

7.2 Bank Branch Demand

In columns (5)-(8) of Table II, we report coefficients from weighted OLS regressions of the estimated

block group fixed effects, γ̂it, from Eq. (13) on demographic attributes of block group residents, both

cross-country and in Metro cores. In all columns, lower-income block groups observe lower fixed

effects, which implies that residents of these areas have a lower propensity to visit any bank branch.

A 1% decline in a block group’s median household income is associated with a roughly 0.23-0.32%

drop in its residents’ “demand” for branch services. If the block group’s access were held fixed and

normalized to one, this range would correspond with the decline in the block group’s number of

branch goers per month.

We cannot say with certainty why residents of low-income areas exhibit lower demand for bank

branches. But evidence from the 2019 FDIC Survey provides some potential explanations. Among

unbanked households, the top 5 reasons cited for not having a bank account are (i) not having enough

money to meet minimum balance requirements (48.9% of respondents), (ii) not trusting banks (36.3%),

(iii) avoiding a bank gives more privacy (36.0%), (iv) bank account fees are too high (34.2%), and (v)

fees are too unpredictable (31.3%). The extent to which these reasons correlate with a respondents’

income, they can be explanations for the lower demand among residents of low-income block groups.

But our sample also includes banked, and quite likely, underbanked residents, the latter of whom have

bank accounts but still rely on alternative financial services like payday loans. Low-income banked

and underbanked residents might exhibit lower demand for banks for the same reasons as unbanked

residents. But they might also have less demand for the kinds of premium services that require visiting

a branch, such as storing valuables in a safety deposit box, using notary services, or consulting with

a banker about more complex financial issues like wealth management or small business banking.

Finally, nonbank financial institutions like check cashers might target their services and advertising to

low income customers, shifting their demand away from banks.

Turning to racial differences in bank branch demand, we find that block groups with high Black

population shares observe larger fixed effects than block groups with high White shares, with controls
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for income alone in column (5). Extrapolations of the coefficient suggest that a block group with a 100%

Black share would observe about 4.1% more branch visitors per month compared to a comparable

block group with a 100% White share, if bank access were held constant and set to one. But when

age controls are added, the sign of the coefficient on the Black share turns negative and is no longer

precisely estimated, suggesting that demand for branch services nationwide between Black and White

communities is not robustly different. In Metro cores, block groups with high Black population shares

do observe precisely estimated higher fixed effects without age controls (8.9% higher demand in

column 7), and the coefficient stays precisely estimated once age controls are added (2.5%).

Overall, results from Sections 7.1 to 7.2 show that (1) across the country and in Metro cores,

residents of low-income block groups use branches less than residents of high-income block groups,

but residents of these low-income block groups exhibit substantially lower demand for branches via

lower block-group fixed effects, and (2) residents of areas with high Black population shares also use

branches less cross-country and in big cities than comparable block groups with high White population

shares. But residents of Black communities show no robust difference in their demand for branch

services nationwide, and they exhibit slightly higher demand for branch services in big cities.

7.3 Decomposing Branch Use

Looking at different retail markets, researchers have studied how weaker access to vital products,

such as grocery stores and hospitals, depresses use of those products and disrupts welfare (Yantzi,

Rosenberg, Burke, and Harrison 2001; Inagami, Cohen, Finch, and Asch 2006; Nicholl, West, Goodacre,

and Turner 2007). Furthermore, access to these products varies by socioeconomic status (Currie

and Reagan 2003; Hamrick, Hopkins et al. 2012)). See also Allcott, Diamond, Dubé, Handbury,

Rahkovsky, and Schnell (2019) for an analysis that separates out demand and supply explanations

for the inequalities in nutrition observed by income. When it comes to banking markets, we can

decompose the variation in branch use into parts due to differences in access versus demand. We do

so by inserting the estimates from the bank access regressions in Table I and the estimates from the

branch use and demand regressions in Table II into the identity of Eq. (20).

Nationwide, the income gradient in branch use from column (2) of Table II is 15.5%. This income

gradient consists of a demand gradient of +23.0% from column (6) of the table and an access gradient

of -7.5% in column (2) of Table I. The decomposition thus shows that the greater demand for branch

services among residents of high-income block groups dominates their weaker access and leads to

their higher overall branch use. When it comes to racial disparities, column (2) of Table II reveals a
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Black-White gap in branch use of 5.6%. This gap consists of 0.3% lower demand and 5.3% lower access.

But the difference in demand is imprecisely estimated, implying that the Black-White gap in branch

use is entirely due to a Black-White gap in bank access rather than in demand.

In Metro cores, the income gradient in branch use (column 4 in Table II) is +15.5%, which can be

separated into an income gradient in access of -8.7% (column 4 in Table I) and an income gradient in

demand of +24.2% (column 8 in Table II). As was the case nationally, residents of high-income block

groups experience weaker access but higher demand, with the latter eclipsing the former enough to

induce higher overall branch use. As for racial differences in big cities, residents of areas with high

Black population shares experience weaker access (an elasticity of -6.4%) compared to areas with

high White population shares, and residents of Black communities exhibit slightly higher demand (an

elasticity of +2.5%). Thus, in big cities, the lack of access in Black communities is powerful enough to

upset the higher demand for bank branches and induce a 3.9% Black-White gap in branch use.

To summarize, we find that low-income communities observe better bank access, both nationally

and in big cities, but their demand for branch services is lower compared to high-income communities,

which induces a lower use of branches. For these low-income communities, a lack of bank access

cannot explain their lower branch use. Black communities, on the other hand, experience weaker

access compared to White communities both cross-country and in big cities. Black communities exhibit

no robust difference nationwide in demand for branches compared to White communities and mildly

stronger demand for branch services in big cities. But their relative lack of access is substantial enough

to overcome their higher demand, leading to a Black-White gap in branch use in big cities as well.

8 Discussion of Policy Implications

Researchers and policymakers have proposed several programs to increase bank access, aiming to

remedy disparities in bank participation (Dahl and Franke 2017; Davidson 2018). Example proposals

are investing in community development banks, which are certified commercial banks that principally

serve minority and low-income communities (Ellwood and Patel 2018); or expanding U.S. postal

banking, which would add checking, savings, and possibly credit services to some or all U.S. Post

Office branches (Baradaran 2013). Our results suggest that these policies would have their largest

impact on bank access in Black communities, particularly those in big cities.

In Online Appendix E, we asses how expanding U.S. postal banking might affect both access to

and use of bank branches. In September 2021, the U.S. Postal Service launched a pilot program in

four post office locations that allowed customers to cash payroll and business checks in the form of
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gift cards (Heckman 2022). Adding more financial services and expanding the program to all Post

Office locations would require congressional legislation. To evaluate the potential expansion of the

policy, we re-estimate each block group’s bank access after adding all Post Office locations registered in

SafeGraph to the set of available branches. We use the time-series estimates of β from before; we leave

unchanged each private bank’s estimated fixed effects, λ jt; and we retain the same estimates of each

block group fixed effects, γit. This kind of analysis, which ignores the general equilibrium effects under

the policy change, is a “partial policy” evaluation of postal banking, akin to what the trade literature

calls a “partial trade impact” of a policy change in trade costs, such as tariffs (Head and Mayer 2014).

Whereas private banks in the analysis retain their original estimated fixed effects, we consider

three different scenarios of fixed effects for the USPS locations. In each scenario, all postal locations

share the same fixed effect for simplicity. In the first scenario, Postal branches are “low quality,” in that

they all share the estimated fixed effect of the 10th percentile of private banks per year-month. In the

second scenario, Postal branches are “medium quality,” having the estimated fixed effect of the 50th

percentile of private banks per year-month. In the third scenario, Postal branches are “high quality,”

having the estimated fixed effect of the 90th percentile of private banks per year-month.

In the low- and medium-quality scenario, we find that an expansion of the postal banking system

would widen the Black-White gap in access, both nationwide and in big cities. Extending banking

services to Post Office locations would mechanically increase bank access for everyone, but it would

enhance access relatively more for residents of predominately White areas than for residents of

predominately Black areas. The racial gap in access widens because Post Offices also tend to be located

comparatively closer to White communities than Black communities, just like private bank branches.

Only in the case of a high quality postal banking system would the Black-White gap in access shrink.

Nationwide, it would shrink from 5.3% to 4.8% per month, and in Metro cores, it would shrink from

6.4% to 5.3% per month. Because block group fixed effects retain their same values from before, any

change in the racial gap in access would equal the relative amounts that branch use would change

between groups. By raising access for everyone, postal banking would increase branch use in all

groups, but the increase would be relatively smaller in Black communities than in White communities.

The exception is a high quality system, which would shrink the Black-White gap in branch use by 0.5

percentage points cross-country and 1.1 percentage points in Metro cores.

Our partial policy evaluation ignores any changes to block group residents’ demand for banking

services that postal banking might bring about, which is a shortcoming of the analysis. Distaste for

private banks might partly explain the low estimated block group fixed effects of some communities.

In the 2019 Survey of Consumer Finances (SCF), the choice “do not like dealing with banks” is the
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second-most cited reason for families not having a checking account, and the fraction of unbanked

respondents selecting this option as their reason has increased steadily over time (from 15% in 1989

to 22.9% in 2019). Proponents of postal banking argue that the unbanked will perceive Post Office

bank branches as more trustworthy than private banks, making the unbanked more likely to utilize

post office locations (Office of the USPS Inspector General 2014; Baradaran 2015). If this is true, postal

banking could improve bank participation by raising demand for bank branch services. Our main

analysis suggests that low-income communities would benefit the most from this potential outcome of

the policy, as residents of these areas observed the lowest estimated block group fixed effects.

An expansion of postal banking could also trigger a competitive reaction from private banks,

leading to an endogenous change in their branch fixed effects, something we also do not account for.

Private banks might develop different fee and service structures to attract unbanked and underbanked

residents. If this were to happen, a postal banking policy could indirectly increase access and consumer

welfare by inducing private banks to improve their branch quality in response to competitive pressures.

But why do private banks not already cater to the unbanked and underbanked? We found that Black

communities exhibit slightly higher demand for branch services in big cities, but they experience

significantly weaker access there. Why do private banks not enter these areas? It is beyond the article’s

scope to answer this question, but it is important to stress that we measure branch demand from

branch visitation, which might not perfectly correlate with bank profits. Private banks might not enter

because doing so is not profitable. If that were the case, another policy that could remedy weak bank

access would be allocating tax credits to banks that establish new branches in Black communities, or

subsidizing community development banks that operate there.

The policy responses discussed so far relate to changes in the locations or quality of bank branches.

But another policy that could improve bank access is enhancing broadband Internet connectivity to

reduce the costs of mobile or online banking. The two groups we identify making the least use of bank

branches (low-income and Black households), simultaneously rely on branches more as their primary

method of banking, rather than mobile or online. Weak access to broadband could be a reason why.

Black adults are about 9 percentage points less likely to have home broadband than White adults (71%

vs. 80%), and low income families earning less than $30,000 are 13 percentage points less likely to have

broadband at home than families earning more than $75,000 (86% vs. 99%) (Pew Research Center 2021).

Programs to expand broadband connectivity in low-income and Black communities could encourage

residents to make greater use of mobile or online banking as a substitute for visiting a physical branch.

Expanding broadband could also raise consumer access to Fintech firms, non-depository institutions

offering financial services entirely online. A purported goal of Fintech is increasing the financial
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inclusion of groups whom traditional banks have historically underserved. But evidence so far on

Fintech’s success at achieving that goal is mixed. Erel and Liebersohn (2022) find that Fintech lenders

expanded credit from the Paycheck Protection Program to small business owners located in areas

with more low-income and minority residents. But Fuster, Plosser, Schnabl, and Vickery (2019) find

that Fintech borrowers of purchase mortgages tend to have higher incomes and are less likely to be

minorities. More time is needed to observe the full potential of Fintech on closing disparities in financial

access. But in every wave of the Survey of Consumer Finances since 1989, the location of a bank’s

branches is cited as the most important reason by far for choosing an institution for a main checking

account (43.1% of respondents). This persistent stated preference suggests that programs targeting the

geographic distribution of retail locations where consumers receive their financial services will remain

important for public policy.

9 Conclusion

We use anonymous location data from mobile devices to develop a local measure of bank access.

The measure is derived from a spatial gravity model and is an expression of a local area’s distance

from surrounding bank branches and branch quality. Both the model and the rich data of consumer

travel patterns allows us to implement a research design that isolates the impact of access on branch

use, controlling for potential differences in demand for branch services.

To overcome distortions in the mobile device data that safeguard user privacy, we estimate the

access measure using the Method of Simulated Moments (MSM), and we introduce an econometric

method that can handle hundreds of thousands of fixed effects in MSM routines. The method can be of

use in other applications relying on big data that is potentially contaminated by differential privacy

methods.

Controlling for block group racial and age shares, we find that access is better for residents of

low-income communities, which implies that a lack of bank access cannot explain their lower use of

bank branches. In contrast, residents of areas with high Black population shares experience weaker

access, largely because branches are located farther away from them. The relative lack of bank access

for Black communities in big cities is so significant that it eclipses their slightly higher demand for

branch services. The consequence is their overall lower use of bank branches, despite Black residents

reporting greater reliance on branches as their primary means of banking.

FEDERAL RESERVE BANK OF CHICAGO
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(A) All Block Group × Branch Pairs

(B) Block Group × Branch Pairs with >4 Visitors, with Fixed Ef-
fects

Figure I
Number of Visitors from Block Groups to Bank Branches by Distance

The figure presents binned scatter plots of the log number of visitors from home Census block groups to bank branches
according to the log mile distance between the block groups and branches. Visitor information is from our core SafeGraph
sample ranging from January 2018 to December 2019. The core sample includes only businesses in SafeGraph with NAICS
codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies)
for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Distance is
computed from the population-weighted center of a block group to the branch. Centers of population are from the 2010
Census, and we use the haversine formula to compute distance (see Footnote 18). Panel A presents the observed (raw) data
and includes all block group × branch pairs, including those with visitor counts of 2 or 3 that SafeGraph rounds up to 4.
Panel B only includes block group × branch pairs with greater than 4 visitors. In that panel, the log numbers of visitors
are residualized by block group × year-month fixed effects and branch × year-month fixed effects. The log distances are
residualized by the same set of fixed effects. To construct the binned scatter plots, we divide the x-axis values into 100
equal-sized (percentile) bins. We then calculate the mean of the y-axis values and the mean of the x-axis values within each
bin. In addition, for Panel B we add back the unconditional mean of the log numbers of visitors and the unconditional mean
of the log distances to re-scale values.
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Figure II
Distributions of Visitor Counts

The figure presents distributions of observed visitor counts, simulated “true” visitor counts, and simulated “manipulated”
visitor counts from visitors’ home Census block groups to bank branches. Observed visitor counts, denoted Vi jt from Eq. (12),
are the raw data from our core SafeGraph sample ranging from January 2018 to December 2019. The core sample includes
only businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or
551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are also listed in the FDIC’s
2019 Summary of Deposits. Simulated “true” visitor counts, denoted V∗i jt from Eq. (13), are draws from the underlying
“true” distribution of visitors, which we assume to be Poisson. Simulated ”maniputed” visitor counts are the ”true” visitor
counts after being manipulated via differential privacy methods presented in Eqs. (10) to (12). The simulated values are
computed from the month-by-month Method of Simulated Moments estimation described in Appendix A. The distribution
of simulated visitor counts includes all positive draws from all simulations across every year-month in the sample period. To
enhance the depictions of the distributions, we censor them at 10 visitors. That is, the number of block group × branch pairs
with visitor counts exceeding 10 is assigned to 10+ visitors in the panel.
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Figure III
Observed vs. Expected Branch Visitors per Census Block Group

The figure presents a scatter plot of the log observed number of branch visitors from each Census block group (i.e.,
Vit ≡

∑
j Vi jt, where Vi jt is given in Eq. (12)) versus the log expected number of branch visitors from each block group based

on the month-by-month MSM estimates (i.e., V̂a
it ≡ exp

(
γ̂it

)
Φ̂a

it, where the access measure Φ̂a
it ≡

∑
j∈Bit

ωi
i jt exp

(
λ̂ jt

)
d−β̂i j reflects

the frequency weights used in the stratified sampling). The observed and expected number of visitors range over the full
sample period from January 2018 to December 2019. Each dot represents a Census block group in a year-month. The red
solid line is a 45◦ line and the light grey solid line cuts the y-axis at 1.4, which corresponds to SafeGraph’s censoring at 4
visitor counts. The steps of the MSM procedure that generate the expected number of branch goers are in Appendix A.
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(A) Time Series of −β̂MSM

(B) Census Block Group Fixed Effects (C) Bank Branch Fixed Effects

Figure IV
Method of SimulatedMoments Parameter Estimates

The figure presents the parameter estimates from the month-by-month Method of Simulated Moments (MSM) estimation of
the visitor count gravity relation in Eq. (13). Panel A illustrates the monthly time series of the −β̂MSM gravity coefficient
estimates, along with 95% confidence intervals. Panel B presents a histogram of the estimated Census block group fixed
effects,

{
γ̂∞it

}
, and Panel C presents a histogram of the estimated bank branch fixed effects,

{
λ̂∞jt

}
. In each histogram, the

fixed effects are grouped into 50 equally-sized bins, and the estimated fixed effects for all months in the sample period are
presented. The step-by-step details of the MSM estimation are provided in Appendix A.
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Figure V
Bank Access Nationwide

The figure illustrates a dot density map of bank access by Census block groups nationwide. The figure is based on our core
SafeGraph sample of bank branches; i.e., only businesses in SafeGraph with NAICS codes equal to 522110 (Commercial
Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data
and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Each dot is positioned at a block group’s center
of population. Bank access estimates are calculated from Eq. (14) and are based on the Method of Simulated Moments
estimation described in Appendix A. Access estimates are calculated month-by-month per block group, and the figure
presents weighted monthly averages, where each month’s weight is its share of the block group’s total observed branch
visitors over the core sample period (January 2018 - December 2019). The map is constructed by grouping block groups into
deciles and shading the dots so that higher-ordered colors in the rainbow gradient (indigo and violet) imply higher bank
access values and lower-ordered colors (red and orange) imply lower access values. Block groups where no resident was
recorded in SafeGraph as having visited a branch in the sample period are shaded white.
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(A) New York City, NY

(B) Los Angeles, CA

(C) Chicago, IL

(D) Houston, TX

Figure VI
Bank Access in the Four Largest U.S. Cities

The figure illustrates dot density maps of bank access by Census block groups in the four largest U.S. cities by population as
of the 2020 Census. The figure is based on our core SafeGraph sample of bank branches; i.e., only businesses in SafeGraph
with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding
Companies) for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits.
Each dot in a panel is positioned at a block group’s center of population. Bank access estimates are calculated from Eq. (14)
and are based on the Method of Simulated Moments estimation described in Appendix A. Access estimates are calculated
month-by-month per block group, and the panels present weighted monthly averages, where each month’s weight is its share
of the block group’s total observed branch visitors over the core sample period (January 2018 - December 2019). Each panel’s
map is constructed by grouping block groups within the panel into deciles and shading the dots so that higher-ordered
colors in the rainbow gradient (indigo and violet) imply higher bank access values and lower-ordered colors (red and orange)
imply lower access values. Block groups where no resident was recorded in SafeGraph as having visited a branch in the
sample period are shaded white.
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Table I
Bank Access by Demographic Attributes

Dep. var.: log(Bank access of block groups) log(Branch proximity) log(Branch quality)

(1) (2) (3) (4) (5) (6) (7) (8)

log(Income) -0.110 -0.076 -0.126 -0.087 -0.076 -0.086 0.001 -0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.001) (0.002)

Black -0.082 -0.053 -0.107 -0.064 -0.143 -0.168 0.090 0.104
(0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.003) (0.003)

Asian 0.470 0.438 0.429 0.398 0.422 0.375 0.016 0.023
(0.014) (0.013) (0.014) (0.013) (0.012) (0.013) (0.007) (0.007)

Other 0.023 0.020 0.078 0.073 0.006 0.064 0.015 0.009
(0.023) (0.023) (0.033) (0.033) (0.022) (0.031) (0.011) (0.015)

Hispanic 0.046 0.081 0.021 0.071 -0.003 -0.030 0.085 0.101
(0.007) (0.007) (0.007) (0.008) (0.007) (0.008) (0.004) (0.004)

Age <15 -0.721 -0.814 -0.757 -0.855 0.036 0.041
(0.017) (0.020) (0.017) (0.019) (0.010) (0.011)

Age 35-54 -0.238 -0.204 -0.253 -0.209 0.015 0.005
(0.017) (0.020) (0.017) (0.020) (0.009) (0.011)

Age 55-64 -0.551 -0.573 -0.675 -0.691 0.124 0.117
(0.019) (0.022) (0.019) (0.023) (0.010) (0.012)

Age 65+ -0.245 -0.262 -0.256 -0.277 0.010 0.014
(0.013) (0.015) (0.013) (0.015) (0.007) (0.008)

log(No. of devices) -0.050 -0.053 -0.057 -0.059 -0.063 -0.072 0.010 0.012
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Observations 2,549,020 2,549,020 1,847,252 1,847,252 2,549,020 1,847,252 2,549,020 1,847,252
Adjusted R2 0.704 0.708 0.634 0.640 0.820 0.774 0.684 0.646
Sample Core Core MC MC Core MC Core MC
Year-month FE O O O O O O O O
County FE O O O O O O O O
RUCA FE O O O O

Each column reports coefficients from a multivariate, weighted OLS regression with standard errors clustered at the Census-block-group
level reported in parentheses. One observation is a block group per month per year in the sample period from January 2018 - December 2019.
Block groups where no resident was recorded in SafeGraph as having visited a bank branch in the year-month are dropped. Observations
are weighted by block-group population counts from the 2019 5-year American Community Survey (ACS). All columns use our core sample
of branch locations, which consists of businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings
Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are also listed in the FDIC’s
2019 Summary of Deposits (SOD). Demographic independent variable observations are population-based decimal shares from the 2019 5-year
ACS. Income is median household income. In columns (1)-(4), the dependent variable is the natural logarithm of the estimated bank access
measure, log Φ̂it, from Eq. (14). In columns (5)-(6), the dependent variable is the natural logarithm of the “branch proximity” component in the
decomposition of Φ̂it in Eq. (15), whereas in columns (7)-(8), the dependent variable is the natural logarithm of the “average branch quality”
component in that decomposition. All dependent variables are computed from the month-by-month Method of Simulated Moments estimation
described in Appendix A. Columns (1), (2), (5), and (7) include all block groups for which we have branch visitor data, whereas columns (3), (4),
(6), and (8) restrict the sample to block groups with Rural-Urban Commuting Areas (RUCA) codes equaling 1 (Metropolitian area core). The
omitted demographic groups are non-Hispanic Whites and age range 15-34.
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Table II
Bank Branch Use and Block Group Fixed Effects by Demographic Attributes

Dep. var.: log(Expected no. of visitors) Block group fixed effects

(1) (2) (3) (4) (5) (6) (7) (8)

log(Income) 0.186 0.155 0.190 0.155 0.296 0.230 0.315 0.242
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005)

Black -0.041 -0.056 -0.017 -0.039 0.041 -0.003 0.089 0.025
(0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011)

Asian 0.238 0.241 0.227 0.224 -0.232 -0.197 -0.202 -0.174
(0.020) (0.020) (0.020) (0.019) (0.023) (0.022) (0.023) (0.022)

Other 0.034 0.041 0.009 0.016 0.010 0.020 -0.068 -0.058
(0.028) (0.029) (0.038) (0.039) (0.033) (0.033) (0.046) (0.046)

Hispanic 0.008 -0.016 0.021 -0.012 -0.038 -0.097 -0.000 -0.083
(0.009) (0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012)

Age <15 0.341 0.343 1.061 1.157
(0.022) (0.025) (0.026) (0.030)

Age 35-54 0.486 0.529 0.724 0.732
(0.023) (0.026) (0.025) (0.029)

Age 55-64 0.101 0.053 0.651 0.626
(0.025) (0.030) (0.029) (0.034)

Age 65+ 0.248 0.253 0.494 0.515
(0.018) (0.020) (0.021) (0.023)

log(No. of devices) 0.606 0.606 0.601 0.601 0.656 0.659 0.658 0.660
(0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Observations 2,549,020 2,549,020 1,847,252 1,847,252 2,549,020 2,549,020 1,847,252 1,847,252
Adjusted R2 0.380 0.381 0.339 0.340 0.310 0.314 0.309 0.313
Sample Core Core MC MC Core Core MC MC
Year-month FE O O O O O O O O
County FE O O O O O O O O
RUCA FE O O O O

Each column reports coefficients from a multivariate, weighted OLS regression with standard errors clustered at the Census-block-group
level reported in parentheses. One observation is a block group per month per year in the sample period from January 2018 - December 2019.
Block groups where no resident was recorded in SafeGraph as having visited a bank branch in the year-month are dropped. Observations are
weighted by block-group population counts from the 2019 5-year American Community Survey (ACS). Dependent variable observations are
based on our core sample of branch locations, which consists of businesses in SafeGraph with NAICS codes equal to 522110 (Commercial
Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands
are also listed in the FDIC’s 2019 Summary of Deposits. Demographic independent variable observations are population-based decimal
shares from the 2019 5-year ACS. Income is median household income. The dependent variable in columns (1)-(4) is the natural logarithm of
the expected number of branch goers from each block group based on the month-by-month Method of Simulated Moments estimates; i.e.,
log V̂∗it ≡ log

∑
j V̂∗i jt, where V̂∗i jt is the predicted mean of V∗i jt in Eq. (13) and β is time-varying. The dependent variable in columns (5)-(8) is the

estimated block group fixed effects, γ̂it, from the gravity relation in Eq. (13). Columns (1), (2), (5), and (6) include all block groups for which
we have branch visitor data, whereas columns (3), (4), (7), and (8) restrict the sample to block groups with Rural-Urban Commuting Areas
(RUCA) codes equaling 1 (Metropolitian area core). The omitted demographic groups are non-Hispanic Whites and age range 15-34.
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Appendix

A Method of Simulated Moments

This section describes the steps used in the Method of Simulated Moments (MSM) to estimate the parameters of
the gravity relation in Eq. (13) that enter our measure of local bank access in Eq. (14). The MSM is run separately per
year-month of our sample period from January 2018 - December 2019.

A.1 Specify the DGP for visitors

The data generating process (DGP) we simulate is the number of visitors between block groups and branches
through time. To account for measurement error in the SafeGraph data and unobservable factors that influence visits,
we assume that the true visitor count V∗i jt is Poisson distributed with mean πi jtRit, where Rit is the number of residents
of block group i in year-month t and πi jt is the share of residents living in block group i that visit branch j in year-month
t. Using the gravity equation from the conceptual framework in Eq. (8) to inform πi jt, we express the true visitor count
as obeying Eq. (13). We measure distance in miles between branches and the population-weighted center of visitors’
home block groups. We use the haversine formula to calculate distance, which accounts for the curvature of the Earth.18

A.2 Sample branches included in estimation

Technically speaking, every branch in our sample is available to each resident and ought to enter a block group’s
measure of bank access. A resident of a block group in, say, New York City, could travel to a First Republic Bank branch
in San Francisco three thousand miles away. But the chances are low, and a sample of over fifty thousand branches, over
two hundred thousand block groups, altogether spanning twenty-four months, makes it computationally challenging
to calculate an access measure that accounts for all possible block group × branch pairs.

Instead, we sample branches per block group using a technique that is similar in spirit to the procedure described
in McFadden (1977) and Davis et al. (2019). Specifically, for each block group, we include the locations of branches that
block group residents actually visited in the year-month plus a random subset of all alternative branches that they could
have visited in the period. We select these alternative branches using stratified sampling in the following manner: Per
block group in each year-month, alternative branches are ranked by their distance away. We divide the number of
alternative branches by 2,000 and round that value up. We then divide the distribution of ranked branches into these
many quantiles and select one branch from each quantile with equal probability. For example, in a year-month in
which a block group exhibits 38,020 alternative branches, the number of quantiles would be 20, and hence, the block
group’s number of randomly sampled alternative branches would be 20.

Notice that, in the observed SafeGraph data, the number of residents in a block group who visit a branch in the
block group’s random alternative set of branches is 0. This means that either no resident truly visited that branch or
the true visitor count was hidden by SafeGraph’s differential privacy.

To establish notation for the samples of block groups, branches, and block group × branch pairs, we let Bit denote
the sample of branches for block group i in year-month t, which is the union of the branches with positive observed
visitor counts, denoted B1

it, and those with 0 visitor counts from the random sample of alternative branches, denoted
B0

it. Similarly, let H jt denote the sample of block groups for branch j in year-month t, which is the union of the block

18 The centers of population are computed using population counts from the 2010 Census and are found here: 2010 Census Centers
of Population. The haversine distance between two latitude-longitude coordinates

(
lat1, long1

)
and

(
lat2, long2

)
is 2r arcsin

(√
h
)
,

where r is the Earth’s radius and h = hav (lat1 − lat2)+cos (lat1) cos (lat2) hav
(
long2 − long2

)
. The haversine function hav (θ) = sin2

(
θ
2

)
.

We take the Earth’s radius to be 3,956.5 miles, which is midway between the polar minimum of 3,950 miles and the equatorial
maximum of 3,963 miles. The haversine formula treats the Earth as a sphere and is less precise than other measures that consider
the Earth’s ellipticity, such as Vincenty’s formula. Yet another alternative that is more representative of actual traveling distance is
the road driving distance between locations. The haversine formula is simple, fairly accurate, and convenient to compute. In Online
Table B.8, we regress the driving times between about 1 million random block groups and bank branches onto the corresponding
haversine distances. Driving times are computed using the Origin-Destination Cost Matrix of ArcGIS Pro under the default settings.
Regressions are run across the entire 1 million sample and over parts of the sample associated with various demographic attributes,
such as including only block groups with Black population shares above the median share from the 2019 ACS. Across the samples,
the regressions produce very high R2, ranging from 0.972 to 0.993, implying that the haversine distance captures variation in driving
times quite well.
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groups with residents who are observed in the data to have visited the branch, denoted H1
jt, and the random sample of

alternative block groups with 0 visitor counts, denoted H0
jt. Finally, let Nit denote the sample of pairs of block groups

and branches in year-month t, which is the union of pairs with positive observed visitor counts, denoted N1
t , and the

pairs with 0 visitor counts from the random stratified sampling, denoted N0
t . Notice that, by definition,

∑
i |Bit| = |Nt|

and
∑

j |H jt| = |Nt|, where | · | denotes cardinality.
The stratified sampling suggests that we must apply frequency weights to any variable measured at the (block

group i, branch j) level, such as visitor counts or pairwise distance, so as to rebalance the data and make it represent
the target population as closely as possible. Following standard practice, the frequency weights are the reciprocal of
the likelihood of being sampled (subject to rounding). Although the frequency weights are at the

(
i, j

)
level, we need to

use them when computing both i-level and j-level fixed effects. Thus, we construct two sets of frequency weights per
year-month, one from the perspective of block group i and the other from the perspective of branch j. In both cases,
because

(
i, j

)
pairs with positive visitor counts are always included in the sample, we assign these pairs a frequency

weight of 1. On the other hand, the
(
i, j

)
pairs with zero visitor counts (which make up the random alternative set of

pairs per year-month) are assigned a weight equaling the number of pairs they represent. Let ωi
i jt denote the frequency

weight from block group i’s perspective in year-month t, and let ω j
i jt denote the frequency weight from branch j’s

perspective. The weights from the branch perspective, ω j
i jt, are only used in the calculation of the branch fixed effects.

The weights ωi
i jt = 1 and ω j

i jt = 1 for
(
i, j

)
pairs with positive observed visitor counts

(
i.e., ∀

(
i, j

)
∈ N1

t

)
. Weights for(

i, j
)

pairs from the stratified sampling satisfy the equations:

ωi
i jt|B

0
it| + 1|B1

it| = Total no. of branches in year-month t ∀
(
i, j

)
∈ N0

t , (A.21)

ω j
i jt|H

0
jt| + 1|H1

it| = Total no. of block groups in year-month t, ∀
(
i, j

)
∈ N0

t . (A.22)

To better understand the calculation of the frequency weights, consider the set of weights from a block group’s
perspective in Eq. (A.21). These weights will be used in computing any statistic at the block group level, using
either simulated or observed data. Continuing with the example from earlier, if the total number of branches in the
year-month minus the number of branches with positive visitor counts from block group i (i.e., |B1

it|) equaled 38,020,
this implies that the frequency weight used in computing statistics for the block group (such as its fixed effects) would
be 1901, since |B0

it| = 20. On average, from a block group’s perspective, the random alternative set of branches per block
group represents slightly higher than a 0.05% sample size of all possible alternative branches from our core set of
branches (i.e., [(38,000/2,000) /2, 000 × 100%] = 0.05%).

A.3 Initialize the fixed effects routine

The MSM uses the visitor data v and the model parameters ψ ≡
{
β, γit, λ jt

}
to minimize the distance between

simulated model moments and data moments. With the very large number of block groups and branches in our
sample, the model of visitor counts in Eq. (13) requires hundreds of thousands of fixed effects to be estimated. There
are simply too many parameters to identify from the MSM minimization problem alone. Instead, we adopt an iterative
routine to identify the fixed effects

{
γit, λ jt

}
and let the minimization problem identify β. Holding fixed an estimate of β

and given initial estimates of the fixed effects, the routine updates the fixed effects estimates until they converge. After
the fixed effects converge per estimate of β, the MSM minimization problem then chooses the optimal β estimate that
satisfies the moment conditions. In the month-by-month estimation, we estimate ψ per year-month of the sample,
which means we run the MSM 24 times and produce 24 estimates of ψ. We initialize the fixed effects routine with
guessed estimates γ̂0

it = λ̂0
jt = 1 for all i and j.

A.4 Simulate visitor counts

We run S = 10 simulations of the number of visitors per block group × branch pair. The S simulations are run
per year-month of the sample. Recall that N1

t denotes the sample of block group × branch pairs with positive visitor
counts in year-month t, and N0

t denotes the sample of block group × branch pairs with 0 visitor counts in year-month t,
coinciding with the number of

(
i, j

)
pairs that arise from the stratified sampling. We distinguish these two groups

when simulating visitor counts because they enter the simulation differently, precisely because the stratified sampled
pairs are adjusted to represent the target population.
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Consider first the set N1
t of pairs with positive observed visitor counts. Per year-month, we begin the simulation

by drawing |N1
t | × S Laplace random variables having mean zero and scale 10/9, and we draw |N1

t | × S independent
Uniform random variables over the unit interval. We draw these random variables only once at the beginning of
each year-month’s run so that the MSM does not have the underlying sample change for every guess of the model
parameters. Given an estimate β̂ of the gravity coefficient and the initial guessed estimates

{
γ̂0

it, λ̂
0
jt

}
of the fixed effects,

we then apply the inverse Poisson CDF to transform the Uniform random variables into Poisson random variables
with distinct means given in Eq. (13). Each Poisson draw is a “true” block group × branch visitor count. Then, to
replicate SafeGraph’s differential privacy methods in the simulations, we (i) add a Laplace draw to all non-zero true
visitor counts to form a “noisy” block group × branch visitor count, (ii) round each noisy visitor count down to the
nearest integer, (iii) set to 0 all noisy visitor counts below 2, and (iv) replace all noisy visitor counts that equal 2 or 3
with 4. Simulated visitor counts are 0 if either the true visitor count (from the Poisson draw) is 0 or the noisy visitor
count (from the Poisson draw plus the Laplace draw) falls below 2. This way, simulated visitor counts that equal 0
arise in the same two ways as would 0 visitor counts in the observed SafeGraph data. Let ṽ = {ṽ1, ṽ2, . . . , ṽS} be the S
simulated visitor counts.

Consider next the set N0
t of block group- × branch pairs with 0 visitor counts that arise from the stratified sampling.

If an extra |N0
t | × S pairs of visitor counts were simulated in the same manner described in the previous paragraph,

they would have disproportionate impact on any computed moments because of the high frequency weights that
would multiply them. Noise from the simulation would be amplified and make the estimation unstable. Rather than
simulating these observations, we construct their implied empirical probability distribution according to the parameter
estimate ψ in each iteration. If an infinite number of visitor counts were in fact simulated, their distribution would
coincide with this constructed empirical distribution. Notice that we cannot apply this approach to the set N1

t of block
group × branch pairs with positive visitor counts because each pair in that set is drawn from a distinct distribution,
due, in part, to the block group- and branch-specific fixed effects. For those pairs, we simulate draws. However, the
pairs in the set N0

t are sampled and meant to represent the remaining population of
(
i, j

)
pairs, which are very high in

number. One stratified sampled observation is meant to represent 2,000 observations from the same distribution. We
construct the empirical distribution that these sampled pairs represent.

That empirical distribution is a truncated and censored version of a Poisson probability mass function per Eq. (13)
plus a Laplace distribution with mean 0 and scale 10/9. Because the Laplace noise is added to the Poisson draw, this
empirical distribution can be thought of as a truncated and censored Laplace distribution whose parameter location
(mean) is the realization of the Poission draw. With this in mind, let G

(
y, k

)
be the CDF of a Laplace distribution with

location parameter k and scale 10/9. And let µ̂i jt denote the estimated mean of the Poisson visitor count in Eq. (13).
Finally, let the probability that the Poisson distribution draws a visitor count of k, given its estimated mean µ̂i jt be
denoted p

(
k, µ̂i jt

)
. Notice that the parameters of the empirical distribution update with every iteration of the estimated

fixed effects and guess of β.
We construct 7 components of the empirical distribution that we use in the moments of the estimation, provided in

Appendix A.6. Because both the Laplace and Poisson distributions have infinite support, we must insert an upper
bound to both supports when constructing the empirical distribution. We bound the Poisson support at K = 20 and
the Laplace support at L = 30. The upper bounds imply that the 7 components of the empirical distribution hold
approximately. As K→∞ and L→∞, they would hold exactly. The 7 components of the empirical distribution we
compute are:

1. Probability that the visitor count equals 0:

Pr
(
Ṽi jt = 0|µ̂i jt

)
≈ p

(
0, µ̂i jt

)
+

K∑
k=1

p
(
k, µ̂i jt

)
× G (2, k) . (A.23)

The probability that a simulated visitor count is zero equals the probability that the Poisson draw equals zero,
represented by the first term in Eq. (A.23), plus the cumulative probability that the Poisson draw has a positive
value but the Laplace draw reduces that positive value to the lower bound of 0. That cumulative probability is
represented by the second term in Eq. (A.23). In that term, the Laplace draw has mean k to adjust for different
possible positive draws of the Poisson, and the CDF value of the Laplace given that mean, G (2, k), is positioned
at 2 because SafeGraph truncates any visitor count below 2. Thus, the second term is the cumulative probability
that the simulated visitor count falls below 2 after the Laplace noise is added to a positive Poisson draw. The
Laplace probability multiplies the Poisson probability because the two draws are independent. Notice that
no Laplace piece enters the first term because SafeGraph adds Laplace noise only to positive observed visitor
counts.
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2. Probability that the visitor count exceeds 0:

Pr
(
Ṽi jt > 0|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (1 − G (2, k)) . (A.24)

This probability is simply the complement of the previous one. Because the visitor count exceeds 0 in this
scenario, Laplace noise is always added to the Poisson draw, and hence, the “survival function” of the Laplace,
given by 1 − G (2, k), multiplies each Poisson probability. The survival value is the probability that the visitor
count avoids truncation.

3. Probability that the visitor count equals 4:

Pr
(
Ṽi jt = 4|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (G (5, k) − G (2, k)) . (A.25)

The probability that the visitor count equals 4 is the probability that the Poisson draw lands at or above 1 visitor
count times the probability that the Lapalace draw pushes the visitor count to a value in the interval between 2
and 4 inclusive (i.e., the censoring region). Because SafeGraph rounds visitor counts down to the nearest integer,
the probability that the Laplace draw carries the visitor count into the censored region is G (5, k) − G (2, k). For
example, a Poisson draw plus a Laplace draw that equaled 4.

−→
9 would round to 4.

4. Probability that the visitor count exceeds 4:

Pr
(
Ṽi jt > 4|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (1 − G (5, k)) . (A.26)

This probability is simply the complement of the previous one. The survival function of the Laplace above 4,
given by 1 − G (5, k), multiplies each Poisson probability. The survival value is the probability that the visitor
count avoids censoring.

5. Expected visitor count:

E
(
Ṽi jt|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

) 4 × {G (5, k) − G (2, k)} +
L∑

l=5

l × {G (l + 1, k) − G (l, k)}

 . (A.27)

The formula for the mean visitor count is broken up into two parts. Both parts are multiplied by the probability,
p
(
k, µ̂i jt

)
, that the Poisson draw lands at or above 1 visitor count so that the observation enters the support of

the empirical distribution. The first part is the probability that the Laplace draw pushes the visitor count to a
value in the interval between 2 and 4 inclusive (the censoring region) multiplied by 4 visitors. The second part
is the probability that the Laplace draw pushes the visitor count to a value of 5 or higher, multiplied by that
value. Because SafeGraph rounds visitor counts down to the nearest integer, the probability of each value in
this second part is the CDF of the Laplace distribution at 1 above that value less the CDF at the value, giben by
G (l + 1, k) − G (l, k).

6. Expected log visitor count, conditional on visitor counts exceeding 0:

E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)
≈

∑K
k=1 p

(
k, µ̂i jt

) [
log 4 × {G (5, k) − G (2, k)} +

∑L
l=5

{
log l × (G (l + 1, k) − G (l, k))

}]
Pr

(
Ṽi jt > 0|µ̂i jt

) . (A.28)

The formula for the mean of the natural logarithm of the visitor count is very similar to that of the mean of the
visitor count from Eq. (A.27). The only adjustments are that the natural logarithm is taken as needed and that
the mean is re-weighted to account for the positive visitor count requirement. That re-weighting is exhibited
via the division by Pr

(
Ṽi jt > 0|µ̂i jt

)
, defined in Eq. (A.24), which is the way to compute the mean of a truncated

random variable.
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7. Expected log visitor count, conditional on visitor counts exceeding 4:

E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)
≈

∑K
k=1 p

(
k, µ̂i jt

) [∑L
l=5

{
log l × (G (l + 1, k) − G (l, k))

}]
Pr

(
Ṽi jt > 4|µ̂i jt

) . (A.29)

This conditional mean is even simpler to compute than the one in Eq. (A.28). The formula consists of just the
second component in the numerator of Eq. (A.28), and the re-weighting in the denominator is the probability of
the visitor count exceeding 4, given in Eq. (A.26).

A.5 Iterate the fixed effects until convergence

Under a fixed estimate β̂, the next step is to iterate the estimated fixed effects until they converge. We iterate the
estimated fixed effects sequentially, beginning with the estimated branch fixed effects

{
λ̂ jt

}
, while holding constant

the estimated block group fixed effects
{
γ̂it

}
at γ̂0

it = 1, ∀i. The iteration routine is as follows. Suppose we are on the
k-th iteration. To estimate the branch fixed effects, we take advantage of another data field in SafeGraph: the total
count of visitors to a branch. The SafeGraph name for this field is RAW_VISITOR_COUNT. Unlike the number of visitors
from a block group to the branch, the branch’s total visitor count is unaffected by SafeGraph’s differential privacy
methods. Because we presume that block group residents can visit any branch cross-country in the year-month, we
can take advantage of a branch’s total visitor count to uniquely pin down the estimate of the branch’s fixed effect. Let
VT

jt denote branch j’s total visitor count in year-month t.
From Eq. (13), the expected number of visitors to branch j from block group i in year-month t based on the k-th

iteration estimates of the fixed effects is
V̂k

i jt = exp
(
λ̂k

jt

)
exp

(
γ̂k

it

)
d−β̂i j . (A.30)

Summing across block groups, and adjusting for the frequency weights from the stratified sampling, gives a branch’s
expected total visitor count:

V̂k
jt = exp

(
λ̂k

jt

) ∑
i∈H jt

ω j
i jt exp

(
γ̂k

it

)
d−β̂i j . (A.31)

Notice that the frequency weights, ω j
i jt, are from a branch’s perspective. For

(
i, j

)
pairs with positive observed visitor

counts, these weights equal 1. For
(
i, j

)
pairs from the stratified sample, they satisfy Eq. (A.22).

Given β̂ and the k-th iteration of the estimated block group fixed effects, γ̂k
it, we determine the k-th iteration of each

branch’s estimated fixed effect, λ̂k
jt, by solving for the value that equates the branch’s expected total visitor count, V̂k

jt

from Eq. (A.31), with the branch’s observed total visitor count, VT
jt. Mathematically speaking, the branch’s fixed effect

estimate satisfies:
λ̂k

jt = log VT
jt − log

∑
i∈H jt

ω j
i jt exp

(
γ̂k

it

)
d−β̂i j (A.32)

Per iteration, Eq. (A.32) pins down each branch’s estimated fixed effect as a function of the estimated block group
fixed effects (and the estimate of β). The estimated block group fixed effects will iterate until they converge, and by
Eq. (A.32), once the estimated block group fixed effects converge, so too do the estimated branch fixed effects, given an
estimate of β.

The iteration process for estimating the block group fixed effects is as follows. Suppose we are on the k-th iteration.
For each block group i in the year-month, we divide the average observed visitor counts Vi jt across the branches in set
B1

it that have positive observed visitor counts, by the average simulated visitor counts across all branches in set Bit and
all simulations S. With this in mind, let the average observed visitor count of block group i be

Vit =
1
|Bit|

∑
j∈Bit

Vi jt. (A.33)

Let the simulated visitor counts from simulation s in iteration k be denoted Ṽk
i jt (s). The average simulated visitor count

of block group i in simulation s is

Ṽ
k

it (s) =

∑
j∈B1

it
Ṽk

i jt (s) +
∑

j∈B0
it
ωi

i jtE
(
Ṽk

i jt|µ̂i jt

)
∑

j∈Bit
ωi

i jt

, (A.34)
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where E
(
Ṽk

i jt|µ̂i jt

)
is provided in Eq. (A.27). Because the calculation is at the block group-level, the frequency weights

used are from the block group perspective, and they either equal 1 or satisfy Eq. (A.21). Averaging across simulations
delivers the mean simulated visitor count of block group i as

Ṽ
k

it =
1
S

∑
s

Ṽ
k

it (s) . (A.35)

The ratio of block group i’s average observed visitor count to average simulated visitor count is thus:

χk
it =

Vit

Ṽ
k

it

(A.36)

We take ratios of averages rather than differences of averages because the fixed effects in the visitor count model in
Eq. (13) are exponentiated. These block group-level ratios then multiplicatively update each block group’s estimated
fixed effect:

γ̂k+1
it = γ̂k

it ×
(
χk

it

)h
, (A.37)

where h is a modifying term to avoid oscillating estimates, and we set its value to 0.5. Notice that if block group i’s
average simulated visitor count is higher than its average observed visitor count in the data, then χk

it < 1, and the block
group’s estimated fixed effect is revised downward.

After each update of the estimated block group fixed effects, we re-transform the Nt × S Uniform random variables
into Poisson random variables using (i) the estimate β̂; (ii) the updated block group fixed effect estimates, γ̂k+1

it ; and (iii)
the updated branch fixed effect estimates, λ̂k+1

jt , based on Eq. (A.32). We then apply differential privacy methods to the
“updated” simulated data. The process iterates until the estimated block group fixed effects converge.19

While the estimated fixed effects are updated using ratios of the averages between observed and simulated values,
we found that the estimates converged faster under a criterion that uses differences in the averages instead. We define
convergence as the squared change between iterations in the mean squared difference between average observed
and simulated visitor counts of a block group being sufficiently small. The criterion is similar in spirit to a GMM
minimization problem in which the moments are the difference in means between the observed and simulated visitor
counts of each block group i, using an identity weighting matrix. Minimization is reached when the change in the GMM
objective function becomes sufficiently small. In the calculation of the average squared difference, we assign more
weight to block groups with branch goers to more branches (higher Bit). Mathematically, the convergence condition is 1

Nt

∑
i

Bit

(
Ṽ

k+1

it − Vit

)2

−
1

Nt

∑
i

Bit

(
Ṽ

k

it − Vit

)2


2

< ε (A.38)

for small ε, which we set to 1e−9.
After the condition in Eq. (A.38) is met, we have converged fixed effects estimates, denoted γ̂∞it and λ̂∞jt , for a given

estimate of β. The final piece of the estimation is to select the optimal β estimate that minimizes the distance between
simulated and data moments.

A.6 Select the moments

To identify β, we choose 6 unconditional moments of the distribution of visitor counts. We select moments that
describe important parts of the distribution. In the estimation, the moments are computed per year-month across all
block groups and branches. Denote the vector of the data moments as m (v), and denote as m

(
ṽs|ψ

)
the analogous

vector of simulated moments from simulation s. The 6 data and simulated moments are:
19The iterative process we use to identify the fixed effects is similar in spirit to the “zig-zag” algorithm, or Gauss-Seidel method,

that is commonly used to identify high-dimensional fixed effects in linear models (Guimaraes and Portugal 2010).
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1. Percent of visitor counts equal to 0:

m1 (v) ≡

∑
(i, j)∈Nt

I
(
Vi jt = 0

)
ωi

i jt∑
(i, j)∈Nt

ωi
i jt

, (A.39)

m1
(
ṽ|ψ

)
≡

∑
(i, j)∈N1

t
I
(
Ṽi jt = 0

)
+

∑
(i, j)∈N0

t
Pr

(
Ṽi jt = 0|µ̂i jt

)
ωi

i jt∑
(i, j)∈Nt

ωi
i jt

, (A.40)

where I (·) stands for the indicator function and Pr
(
Ṽi jt = 0|µ̂i jt

)
is from Eq. (A.23). The data moment m1 (v) is

straightforward. The simulated moment m1
(
ṽ|ψ

)
adds the fraction of the simulated visitor counts equaling 0 to

the probability of the stratified sample of visitor counts equaling 0, adjusted by the frequency weights.

2. Percent of visitor counts equal to 4:

m2 (v) ≡

∑
(i, j)∈Nt

I
(
Vi jt = 4

)
ωi

i jt∑
(i, j)∈Nt

ωi
i jt

, (A.41)

m2
(
ṽ|ψ

)
≡

∑
(i, j)∈N1

t
I
(
Ṽi jt = 4

)
+

∑
(i, j)∈N0

t
Pr

(
Ṽi jt = 4|µ̂i jt

)
ωi

i jt∑
(i, j)∈Nt

ωi
i jt

, (A.42)

where Pr
(
Ṽi jt = 4|µ̂i jt

)
is from Eq. (A.25).

3. Average log distance, in cases where Vi jt, Ṽi jt = 0:

m3 (v) ≡

∑
(i, j)∈Nt

I
(
Vi jt = 0

)
ωi

i jt log di j∑
(i, j)∈Nt

I
(
Vi jt = 0

)
ωi

i jt

, (A.43)

m3
(
ṽ|ψ

)
≡

∑
(i, j)∈N1

t
I
(
Ṽi jt = 0

)
log di j +

∑
(i, j)∈N0

t
Pr

(
Ṽi jt = 0|µ̂i jt

)
ωi

i jt log di j∑
(i, j)∈Nt

I
(
Ṽi jt = 0

)
ωi

i jt

. (A.44)

4. Average log distance, in cases where Vi jt, Ṽi jt = 4:

m4 (v) ≡

∑
(i, j)∈Nt

I
(
Vi jt = 4

)
ωi

i jt log di j∑
(i, j)∈Nt

I
(
Vi jt = 4

)
ωi

i jt

, (A.45)

m4
(
ṽ|ψ

)
≡

∑
(i, j)∈N1

t
I
(
Ṽi jt = 4

)
log di j +

∑
(i, j)∈N0

t
Pr

(
Ṽi jt = 4|µ̂i jt

)
ωi

i jt log di j∑
(i, j)∈Nt

I
(
Ṽi jt = 4

)
ωi

i jt

. (A.46)

5. OLS coefficient from regressing log visitor counts onto their associated log distances, in cases where
Vi jt, Ṽi jt > 0:

First, using the observed data, we define the regression’s dependent and independent variables, respectively, as

yi jt =
〈
log Vi jt

〉
(i, j)∈N1

t
(A.47)

Xi jt =
[
〈1〉(i, j)∈N1

t
,

〈
log di j

〉
(i, j)∈N1

t

]
. (A.48)

Here, 〈·〉(i, j)∈N1
t

denotes a vector with length equaling the number of elements in the set N1
t . The dependent

variable yi jt consists of a vector of log visitor counts, whereas the independent variables are a vector of ones and
a vector of log distances. With these variables established, the data moment is

m5 (v) ≡ Second element of
(
X′i jtXi jt

)−1 (
X′i jtyi jt

)
(A.49)
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Notice that, because the moment reflects only positive observed visitor counts, the frequency weights all equal 1
and do not appear in the data moment.

The corresponding simulated moment uses a weighted least squares (WLS) coefficient because the frequency
weights are not all 1. With this in mind, the observation weights of the WLS are defined as

η̃i jt ≡

 〈1〉(i, j)∈N1
t :Ṽi jt>0〈

ωi
i jt Pr

(
Ṽi jt > 0|µ̂i jt

)〉
(i, j)∈N0

t

 , (A.50)

where Pr
(
Ṽi jt > 0|µ̂i jt

)
is from Eq. (A.24). The observation weights consist of (1) a vector of ones with length

equaling the number of
(
i, j

)
pairs with positive observed visitor counts that also have positive simulated visitor

counts, and (2) a vector of frequency-weighted probabilities that simulated visitor counts from the set of
(
i, j

)
pairs belonging to the stratified sample exceed 0.

The dependent variable in the WLS is defined as

ỹi jt ≡
√
η̃i jt �


〈
log Ṽi jt

〉
(i, j)∈N1

t :Ṽi jt>0〈
E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)〉
(i, j)∈N0

t

 , (A.51)

where � is the element-wise product and E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)
is from Eq. (A.28). The dependent variable

consists of (1) a weighted vector of log simulated visitor counts with length equaling the number of
(
i, j

)
pairs

with positive observed visitor counts that also have positive simulated visitor counts, and (2) a weighted vector
of mean log simulated visitor counts from the set of

(
i, j

)
pairs belonging to the stratified sample, conditional on

the simulated visitor counts exceeding 0.

The independent variable in the WLS is defined as

X̃i jt ≡

 √
η̃i jt,

√
η̃i jt �


〈
log di j

〉
(i, j)∈N1

t :Ṽi jt>0〈
log di j

〉
(i, j)∈N0

t


 . (A.52)

The independent variable consists of (1) a weighted vector of ones with length equaling the number of
(
i, j

)
pairs with positive observed visitor counts, (2) a weighted vector of associated log distances from the set of

(
i, j

)
pairs with positive observed visitor counts that also have positive simulated visitor counts, and (3) a weighted
vector of associated log distances from the set of

(
i, j

)
pairs belonging to the stratified sample.

With these terms established, we set the simulated moment as

m5
(
ṽ|ψ

)
≡ Second element of

(
X̃′i jtX̃i jt

)−1 (
X̃′i jt ỹi jt

)
. (A.53)

6. OLS coefficient from regressing log visitor counts onto their associated log distances, where Vi jt, Ṽi jt > 4:

The sixth data moment is similar to the fifth data moment, except that it conditions on the visitor count
exceeding 4 rather than 0. Specifically, let

qi jt =
〈
log Vi jt

〉
(i, j)∈N1

t :Vi jt>4
(A.54)

Zi jt =
[
〈1〉(i, j)∈N1

t :Vi jt>4 ,
〈
log di j

〉
(i, j)∈N1

t :Vi jt>4

]
. (A.55)

The data moment is then
m6 (v) ≡ Second element of

(
Z′i jtZi jt

)−1 (
Z′i jtqi jt

)
. (A.56)

The sixth simulated moment is also similar to the fifth simulated moment, just now conditioning on Ṽi jt > 4.
Thus, let the WLS observation weights be

ξ̃i jt ≡

 〈1〉(i, j)∈N1
t :Ṽi jt>4〈

ωi
i jt Pr

(
Ṽi jt > 4|µ̂i jt

)〉
(i, j)∈N0

t

 , (A.57)
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where Pr
(
Ṽi jt > 4|µ̂i jt

)
is from Eq. (A.26). The dependent variable in the WLS is defined as

q̃i jt ≡

√
ξ̃i jt �


〈
log Ṽi jt

〉
(i, j)∈N1

t :Ṽi jt>4〈
E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)〉
(i, j)∈N0

t

 , (A.58)

where E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)
is from Eq. (A.29). Likewise, the independent variable in the WLS is defined as

Z̃i jt ≡

 √
ξ̃i jt,

√
ξ̃i jt �


〈
log di j

〉
(i, j)∈N1

t :Ṽi jt>4〈
log di j

〉
(i, j)∈N0

t


 . (A.59)

With these terms established, we set the simulated moment as

m6
(
ṽ|ψ

)
≡ Second element of

(
Z̃′i jtZ̃i jt

)−1 (
Z̃′i jtq̃i jt

)
. (A.60)

In the procedure, we take the mean of the simulated moments by averaging values across the S simulations. Let
m̂

(
ṽ|ψ

)
be the estimate of the model moments from the S simulations:

m̂
(
ṽ|ψ

)
=

1
S

∑
S

m
(
ṽs|ψ

)
. (A.61)

The final step of the MSM procedure is to find the estimate of β that minimizes the distance between the data
moments and simulated model moments.

A.7 Construct the MSM estimator

The MSM estimator β̂MSM minimizes the weighted sum of squared errors between the simulated model moments
and data moments. So that all errors are expressed in the same units and the minimization problem is scaled properly,
we use the error function e

(
ṽ, v|ψ

)
, which is the percent difference between the two vectors of moments:

e
(
ṽ, v|ψ

)
≡

m̂
(
ṽ|ψ

)
−m (v)

m (v)
. (A.62)

In this case, the MSM estimator is
β̂MSM = argmin

β
e
(
ṽ, v|ψ

)′We
(
ṽ, v|ψ

)
, (A.63)

where W is an 8× 8 weighting matrix that controls how each moment is weighted in the minimization problem. Notice
that each candidate β in Eq. (A.63) is associated with a different set of converged fixed effects estimates

{
γ̂∞it , λ̂

∞

jt

}
.

We use the identity matrix I for the weighting matrix W. We also implemented a two-step procedure to select
an optimal weighting matrix W, but we found that approach to produce unstable estimates. This is not surprising,
given evidence in the literature of the underperformance of the two-step procedure when there is uncertainty in the
estimation of the weighting matrix (Arellano and Bond 1991; Hwang and Sun 2018).

Under this identity weighting matrix, one can derive the variance-covariance matrix of the MSM estimator β̂MSM as

V̂ar
(
β̂MSM

)
=

(
1 +

1
S

) [∂m̂
(
ṽ|ψ

)
∂β

′

W−1 ∂m̂
(
ṽ|ψ

)
∂β

]−1

, (A.64)

where
∂m̂(ṽ|ψ)
∂β is the derivative of the vector of simulated moments, evaluated at β̂MSM. We calculate the derivatives

numerically by taking a central difference around β̂MSM.
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