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PAPER PREVIEW

I Setting: retail loan officer decisions in a major bank in China

I Finding: when loan officers are attention constrained, low SES
applicants are more likely rejected without careful review

I Main takeaway is the mechanism
I Decision maker attention constraints⇒ worse financial inclusion
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ATTENTION-BASED MECHANISM

I Suppose you are a loan officer. You make two decisions:
1. How much time to spend reading an application
2. Approval or reject

I If you have infinite time, you can carefully read all applications

I If you are busy, you will have to ration your attention... which has
differential impact on high vs. low SES applicants
I Low SES applicants are more likely “rashly rejected”
I Under extreme conditions, some ultra-high SES applicants may

even be “blindly approved”

I To be clear, this could be entirely rational for you (the loan officer)
I But this negatively impacts financial inclusion
I Mechanism formalized in a model details
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POLICY IMPLICATIONS

I Here, attention constraint is the main impediment to inclusion

I Therefore, technologies that relax decision-maker attention
constraints may promote inclusion
I e.g. Better algorithms for summarizing applicant information

I Broader implications: we suspect that attention constraints
matter in other settings too
I Recruiters spend less than a minute on each resume
I College admission officers spend minutes on each application
I Judges and patent officers often have years of backlog
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OUTLINE

1. Setting and preliminary findings

2. Main results
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RETAIL LOAN SCREENING DATA

I Setting: retail loan applications from a large Chinese bank
I ≈ 146,000 applications (April 2013 - April 2014)
I Decisions by 92 loan officers. Approval rate 34%
I Workload dispatched to officers via an external algorithm

I Detailed administrative data:
I Attention measure: time spent reviewing each application
I All credit-relevant information that loan officers see

I Loan officers are attention constrained
I Even though each application has hundreds of pages, median

review time per application is only 18 minutes
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SOCIAL-ECONOMIC STATUS (SES) LABELS

I Social status labels:
I Local resident: not a migrant worker
I Public Employee: employed by government or state-owned firms

I Economic status labels:
I Homeowner: whether one owns property
I Employment certificate: a verifiable certificate provided by large

employers, indicating stable long-term employment
I Income certificate: a verifiable certificate for stable income
I Regular pay: a complementary measure for stable income

Theory and anecdotal evidence suggests that loan officers may use
these simple SES labels to guide attention allocation.
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HIGH SES APPLICANTS ARE APPROVED MORE

Takeaway: after controlling for a comprehensive list of credit quality
controls, applicants with SES labels are much more likely approved
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ATTRACTIVE VS. UNATTRACTIVE GROUPS

I Summarize SES labels using their implied approval rates:

SocialStatusi ≡ ̂Approvali|{PublicEmployeei,LocalResidenti}

EconomicStatusi ≡ ̂Approvali|{EmploymentCerti,RegularPayi, IncomeCerti,HomeOwneri}

I Group definition: attractive group = above median applicants
according to social or economic status labels:
I Corr(Socially Attractivei,Economically Attractivei) = −0.13

I Large gaps in approval rates
I Socially attractive vs. unattractive: 51.9% vs. 18.1%
I Economically attractive vs. unattractive: 65.5% vs. 25.4%
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PUZZLE: THE TWO GROUPS HAVE LARGELY

similar CREDIT QUALITY METRICS
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WHAT MIGHT BE GOING ON?

I Conjecture: unattractive applicants are not paid adequate attention

Median num of minutes spent per application

I Suggestive evidence 1:

low SES applicants receive
less review time

I Suggestive evidence 2:
low SES applicants are
more likely rejected with
boilerplate reasons

I Next step: explore orthogonal variation in attention constraints
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ATTENTION CONSTRAINT VARIATION

I Busyness measure: # of applications processed/day
I Distribution: (10%, 25%, 50%, 75%, 90%) = (10, 15, 19, 24, 27)

I Concern: realized busyness can be endogenous

I Instrument: workload assignments
I Relevance: can explain ≈ 40% variation

̂Busynessj,d =

3∑
τ=0

b̂τ ·Assignmentj,d−τ

I External: assignments made by an algorithm that loan officers
have no control over details

I Orthogonal: num of assignments uncorrelated with observable
credit metrics and applicant characteristics details
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ILLUSTRATION: VARYING ATTENTION CONSTRAINT
I Sort the sample into deciles by assignment-predicted busyness

I Takeaway: when officers are busier, they pay less attention to
low SES applicants and reject them more frequently
I Some evidence higher approval rate for high SES applicants
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RESULT 1: ATTENTION ALLOCATION
Dependent variable: StandardizedReviewTime

Busyness measure: Predicted Busyness LOO-Predicted Busyness
(1) (2) (3) (4) (5) (6)

β1BusynessDecile −0.025∗∗∗ −0.024∗∗∗ −0.029∗∗∗ −0.019∗∗∗ −0.016∗∗∗ −0.022∗∗∗

(−8.297) (−9.248) (−8.999) (−6.393) (−6.134) (−6.397)

β2Attractive(Social) 0.461∗∗∗ 0.434∗∗∗ 0.470∗∗∗ 0.445∗∗∗

(23.833) (21.608) (23.819) (21.431)

β3Attractive(Social) × BusynessDecile 0.013∗∗∗ 0.015∗∗∗ 0.013∗∗∗ 0.013∗∗∗

(4.722) (5.152) (4.668) (4.334)

β4Attractive(Economic) 0.285∗∗∗ 0.215∗∗∗ 0.289∗∗∗ 0.220∗∗∗

(13.311) (10.031) (13.975) (11.090)

β5Attractive(Economic)× BusynessDecile 0.013∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.011∗∗∗

(4.139) (3.645) (3.980) (4.022)

Application Controls Y Y Y Y Y Y
Local Busyness Controls N N N Y Y Y
Officer-Month-Yr FE Y Y Y Y Y Y
Week FE Y Y Y Y Y Y
Branch FE Y Y Y Y Y Y
Loan type FE Y Y Y Y Y Y
Observation 145,982 145,982 145,982 145,982 145,982 145,982
Adjusted R-squared 0.074 0.044 0.082 0.075 0.045 0.082
β1 + β3 −0.011∗∗∗ −0.014∗∗∗ −0.006∗∗∗ −0.009∗∗∗

P-value of (β1 + β3) (0.000) (0.000) (0.001) (0.000)
β1 + β5 −0.011∗∗∗ −0.017∗∗∗ −0.004∗ −0.011∗∗∗

P-value of (β1 + β5) (0.000) (0.000) (0.070) (0.000)

(standard errors clustered by week and officer)

Takeaway: when loan officers are busier, they spend less time
reviewing low SES applicants
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RESULT 2: APPROVAL RATE
Dependent variable: Approval

Busyness measure: Predicted Busyness LOO-Predicted Busyness
(1) (2) (3) (4) (5) (6)

β1BusynessDecile −0.004∗∗∗ −0.003∗∗∗ −0.006∗∗∗ −0.004∗∗∗ −0.003∗∗∗ −0.006∗∗∗

(−4.380) (−4.046) (−8.048) (−5.087) (−4.382) (−9.354)

β2Attractive(Social) 0.399∗∗∗ 0.367∗∗∗ 0.403∗∗∗ 0.370∗∗∗

(56.706) (50.568) (58.399) (53.776)

β3Attractive(Social) × BusynessDecile 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(7.241) (7.018) (6.683) (7.171)

β4Attractive(Economic) 0.383∗∗∗ 0.331∗∗∗ 0.384∗∗∗ 0.331∗∗∗

(36.447) (31.948) (36.992) (35.311)

β5Attractive(Economic)× BusynessDecile 0.013∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗

(8.564) (7.725) (8.553) (8.111)

Application Controls Y Y Y Y Y Y
Local Busyness Controls N N N Y Y Y
Officer-Month-Yr FE Y Y Y Y Y Y
Week FE Y Y Y Y Y Y
Branch FE Y Y Y Y Y Y
Loan type FE Y Y Y Y Y Y
Observation 145,982 145,982 145,982 145,982 145,982 145,982
Adjusted R-squared 0.272 0.219 0.342 0.272 0.219 0.342
β1 + β3 0.005∗∗∗ 0.002∗∗∗ 0.004∗∗∗ 0.001∗∗

P-value of (β1 + β3) (0.000) (0.000) (0.000) (0.039)
β1 + β5 0.010∗∗∗ 0.006∗∗∗ 0.009∗∗∗ 0.005∗∗∗

P-value of (β1 + β5) (0.000) (0.000) (0.000) (0.000)

(standard errors clustered by week and officer)

Takeaway: when loan officers are busier, they are more likely to reject
low SES applicants
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SUMMARY

I Finding: why busy, loan officers are more likely to reject low SES
applicants

I Mechanism: attention rationing⇒worse inclusion

I Takeaway: attention constraints of decision makers can hinder
financial inclusion

I THANK YOU FOR YOUR ATTENTION.
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MODEL SET UP

Follows Bartoš et al. (2016)’s “attention discrimination” model.

I Loan officer receives an application. If approved:
I Earns interest rate r if borrower does not default
I Lose 100% otherwise

I Default probability is p = p̄G + pI
I Group-average p̄G is observable at no cost
I pI ∼ N(0, σ2) can be learned at cost c

I Loan officer decisions:
I Whether to pay attention c
I Whether to approve/reject
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MODEL SOLUTION

I Very favorable (low p̄G):
I immediately approve

I Intermediate (medium p̄G):
I learn pI before deciding

I Very unfavorable (high p̄G):
I immediately reject

I Main prediction: If attention cost c increases, both “immediately
approve” and “immediately reject” regions expand

back
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ASSIGNMENT DOES NOT DEPEND ON BACKLOG

I Concern: if the algorithm reduces workload assignment to
officers with bigger backlogs, then officers have indirect control

Dependent Variable: Assignmentj,d

(1) (2) (3) (4)
Backlogj,d −0.016 −0.016 −0.016 −0.016

(−1.133) (−1.138) (−1.139) (−1.136)
Backlogj,d−1 0.005 0.005 0.005

(1.613) (1.627) (1.634)
Backlogj,d−2 0.000 0.000

(0.123) (0.113)
Backlogj,d−3 0.001

(0.407)
Officer-Month-Yr FE Y Y Y Y
Day FE Y Y Y Y

Observation 9,235 9,235 9,235 9,235
Adjusted R-squared 0.604 0.604 0.604 0.604

back
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