Pay-As-You-Go Insurance

Experimental Evidence on Consumer Demand and Behavior

Ray Kluender (Harvard Business School) December 15, 2022

Disclosures

- I gratefully acknowledge support from J-PAL North America for a pilot version of the experiment and from HBS for data purchases.
- I have no financial interests or conflicts to disclose.

- Despite universal mandate, 17% of drivers in California are uninsured
 - \rightarrow Participation in many insurance markets is suboptimally low (Cole et al., 2013)
 - \rightarrow Liquidity requirements present a barrier to coverage (Casaburi and Willis, 2018)

- Despite universal mandate, 17% of drivers in California are uninsured
 - \rightarrow Participation in many insurance markets is suboptimally low (Cole et al., 2013)
 - ightarrow Liquidity requirements present a barrier to coverage (Casaburi and Willis, 2018)
- Many markets serving low-income consumers offer smaller quantities at higher prices to increase market participation (Attanasio and Pastorino, 2020)

- Despite universal mandate, 17% of drivers in California are uninsured
 - \rightarrow Participation in many insurance markets is suboptimally low (Cole et al., 2013)
 - ightarrow Liquidity requirements present a barrier to coverage (Casaburi and Willis, 2018)
- Many markets serving low-income consumers offer smaller quantities at higher prices to increase market participation (Attanasio and Pastorino, 2020)
- Pay-as-you-go contracts enable purchases of smaller durations of coverage
 - \rightarrow Pay-as-you-go contracts common in other markets (cell phones, utilities)

- Despite universal mandate, 17% of drivers in California are uninsured
 - \rightarrow Participation in many insurance markets is suboptimally low (Cole et al., 2013)
 - ightarrow Liquidity requirements present a barrier to coverage (Casaburi and Willis, 2018)
- Many markets serving low-income consumers offer smaller quantities at higher prices to increase market participation (Attanasio and Pastorino, 2020)
- Pay-as-you-go contracts enable purchases of smaller durations of coverage
 - \rightarrow Pay-as-you-go contracts common in other markets (cell phones, utilities)

Q: What are the effects the introduction of a pay-as-you-go contract on insurance demand?

This Project

- Setting: California auto insurance market
- Partner: Insurtech "Hugo" introducing novel pay-as-you-go auto insurance contract
 - $\rightarrow~$ Buy days of coverage at a time
 - $\rightarrow~$ Pause insurance on days you don't drive

This Project

- Setting: California auto insurance market
- Partner: Insurtech "Hugo" introducing novel pay-as-you-go auto insurance contract
 - ightarrow Buy days of coverage at a time
 - $\rightarrow~$ Pause insurance on days you don't drive

Randomize:

- 1. Traditional or pay-as-you-go contract \implies pay-as-you-go on take-up and coverage
- 2. Price of pay-as-you-go insurance (conditional on risk) \implies demand wrt price
- 3. Incentives to buy larger number of days at a time \implies bound WTP for smaller quantities

Contributions to the Literature

 Optimal contracts and underinsurance in auto insurance markets (Vickrey, 1968; Edlin, 1999; Bordoff and Noel, 2008; Jin and Vasserman, 2021; Sun and Yannelis, 2016)
 + Characterize uninsured and speak to potential solutions

Contributions to the Literature

- Optimal contracts and underinsurance in auto insurance markets (Vickrey, 1968; Edlin, 1999; Bordoff and Noel, 2008; Jin and Vasserman, 2021; Sun and Yannelis, 2016)
 + Characterize uninsured and speak to potential solutions
- Role of liquidity constraints for insurance demand

 (Karlan and Zinman, 2008; Adams, Einav, and Levin, 2009; Gross, Notowidigdo, and Wang, 2014; Ericson and Sydnor, 2018; Miller and Soo, 2020; Casaburi and Willis, 2018; Rampini and Viswanathan, 2022)
 + Estimate effects of breaking connection between financing and insurance

Contributions to the Literature

- Optimal contracts and underinsurance in auto insurance markets (Vickrey, 1968; Edlin, 1999; Bordoff and Noel, 2008; Jin and Vasserman, 2021; Sun and Yannelis, 2016)
 + Characterize uninsured and speak to potential solutions
- 2. Role of liquidity constraints for insurance demand

 (Karlan and Zinman, 2008; Adams, Einav, and Levin, 2009; Gross, Notowidigdo, and Wang, 2014; Ericson and Sydnor, 2018; Miller and Soo, 2020; Casaburi and Willis, 2018; Rampini and Viswanathan, 2022)
 + Estimate effects of breaking connection between financing and insurance
- Consumer demand for smaller quantities/pay-as-you-go contracts (Jack and G. Smith, 2015; Aker and Mbiti, 2010; Kalba, 2008; Baker, Johnson, and Kueng, 2020; Attanasio and Pastorino, 2020)
 - + Pay-as-you-go contracts for insurance, in US, and enrich understanding of demand
 - + Implications for other fin/insur-tech products (e.g., buy-now-pay-later, earned wage access)

Roadmap

Background

Experiment

Data & Experiment Sample

Results

Roadmap

Background

Experiment

Data & Experiment Sample

Results

The Uninsured Driver Problem

- Despite a universal insurance mandate, 13% of drivers uninsured nationally
 - \rightarrow 17% in California (Insurance Research Council, 2021)
- Uninsured drivers are exposed to large financial risks in event of accident
 - $\rightarrow~\mbox{Penalties}$ for driving uninsured include fines and impounded vehicle
 - \rightarrow Ineligible for compensation in event of accident ("no-pay-no-play")
- Uninsured impose large externalities on other drivers
 - \rightarrow Premium externalities of \$27B/year, \$6B in CA alone (Sun and Yannelis, 2016)
 - \rightarrow Uninsurance and high premiums can reinforce each other (E. Smith and Wright, 1992)

The Uninsured Driver Problem

- Despite a universal insurance mandate, 13% of drivers uninsured nationally
 - \rightarrow 17% in California (Insurance Research Council, 2021)
- Uninsured drivers are exposed to large financial risks in event of accident
 - $\rightarrow~$ Penalties for driving uninsured include fines and impounded vehicle
 - \rightarrow Ineligible for compensation in event of accident ("no-pay-no-play")
- Uninsured impose large externalities on other drivers
 - \rightarrow Premium externalities of \$27B/year, \$6B in CA alone (Sun and Yannelis, 2016)
 - \rightarrow Uninsurance and high premiums can reinforce each other (E. Smith and Wright, 1992)

Three features of the auto insurance market may contribute

1. Minimum liability insurance coverage ("15/30/5") may offer <u>limited insurance value</u> for households without assets (limited liability constraint)

- 1. Minimum liability insurance coverage ("15/30/5") may offer <u>limited insurance value</u> for households without assets (limited liability constraint)
- 2. Actuarially unfair premiums: Mileage is a primary risk factor but is unpriced in practice
 - Low-income drivers driver fewer miles on average (Bordoff and Noel, 2008) Figure

- 1. Minimum liability insurance coverage ("15/30/5") may offer <u>limited insurance value</u> for households without assets (limited liability constraint)
- 2. <u>Actuarially unfair premiums</u>: Mileage is a primary risk factor but is unpriced in practice - Low-income drivers driver fewer miles on average (Bordoff and Noel, 2008) (Figure)
- 3. <u>Nonstandard market</u> pools drivers shopping for minimum coverage & high-risk drivers
 - Volatile, transaction-heavy, and features high fees (13% of net earned premiums)
 - Disproportionately borne by drivers cycling in/out of coverage
 - Coverage requires high upfront payments (often the full policy period)

- 1. Minimum liability insurance coverage ("15/30/5") may offer <u>limited insurance value</u> for households without assets (limited liability constraint)
- 2. <u>Actuarially unfair premiums</u>: Mileage is a primary risk factor but is unpriced in practice - Low-income drivers driver fewer miles on average (Bordoff and Noel, 2008) (Figure)
- 3. <u>Nonstandard market</u> pools drivers shopping for minimum coverage & high-risk drivers
 - Volatile, transaction-heavy, and features high fees (13% of net earned premiums)
 - Disproportionately borne by drivers cycling in/out of coverage
 - Coverage requires high upfront payments (often the full policy period)

Pay-as-you-go (1) reduces upfront payments, (2) eliminates fees, (3) only bills days driven

Roadmap

Background

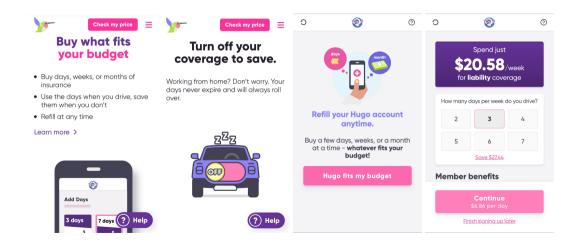
Experiment

Data & Experiment Sample

Results

Pay-as-you-go Insurance: How it works

- Drivers can purchase 3, 7, 14, or 30 days at a time by SMS or website
 - ightarrow 67% mark-up on price-per-day of normal insurance, only paid on days you drive


Pay-as-you-go Insurance: How it works

- Drivers can purchase 3, 7, 14, or 30 days at a time by SMS or website
 - ightarrow 67% mark-up on price-per-day of normal insurance, only paid on days you drive
- Coverage is active unless driver pauses insurance (via SMS or website)
 - ightarrow Can reactivate anytime with days indexed in 24-hour increments relative to last activation

Pay-as-you-go Insurance: How it works

- Drivers can purchase 3, 7, 14, or 30 days at a time by SMS or website
 - ightarrow ~ 67% mark-up on price-per-day of normal insurance, only paid on days you drive
- Coverage is active unless driver pauses insurance (via SMS or website)
 - ightarrow Can reactivate anytime with days indexed in 24-hour increments relative to last activation
- Regulations require 10 days coverage after lapsation
 - ightarrow ~ 10 days charged upfront as "lifetime membership fee"
 - $\rightarrow~$ Drivers borrow against these days as "grace period" when account is exhausted
 - $\rightarrow~$ Pay back days "borrowed" when they top up account and add additional days on top

Hugo Insurance: Explaining the Product

Setting & Intervention

Setting:

- Uninsured drivers shopping for minimum liability insurance coverage in CA
- Recruit using lead aggregators and online ads between March and August 2019
- Contracts offer minimum liability coverage and run for 3 months

Setting & Intervention

Setting:

- Uninsured drivers shopping for minimum liability insurance coverage in CA
- Recruit using lead aggregators and online ads between March and August 2019
- Contracts offer minimum liability coverage and run for 3 months

Intervention: Randomize along three dimensions:

1. Type of contract: Traditional (1/7) vs. Pay-as-you-go (6/7)

Within pay-as-you-go contract, randomize 3 prices x discount/no discount (1/6 each)
2. Price of insurance: Randomly vary price (base, up 20%, or down 20%)
Waiver from CA DOI allowing us to randomize price conditional on risk
3. Bundle discounts: Randomly vary discount of 2 (6) days if they purchase 14 (30) days

Roadmap

Background

Experiment

Data & Experiment Sample

Results

Data

- Insurance application information
 - ightarrow Demographics (age, gender, years experience) and quoted traditional premium
 - \rightarrow Vehicle make, model, and year (+ resale value collected via MTurk)
- Insurance administration data
 - \rightarrow Take-up, purchases, utilization
 - \rightarrow Data on take-up from any insurer (covering >90% of market)
 - $\rightarrow~$ Stripe payment processing data which includes "insufficient funds" bounces
- Credit report data from Experian
 - $\rightarrow~$ Credit score, debts in collection, access to credit, etc.

Applicant Characteristics

	Mean	SD	Median
3-Month Premium	232	94.5	209
Daily Premium	4.27	1.83	3.83
Vehicle Resale Value	1,877	3,293	551
Age	37.8	10.4	36.6
Income Insight Score*	37,452	15,625	34,000
Vantage Credit Score*	515	127	532
Total Inquiries*	5.5	6.82	3
Credit Card Limit*	497	2,969	0
Is Credit Constrained*	80.8	39.4	100
N (N*)	1,537	(1,309)	

Roadmap

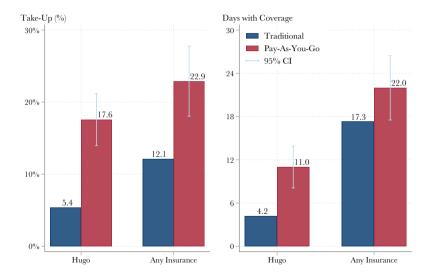
Background

Experiment

Data & Experiment Sample

Results

Q1: Does pay-as-you-go increase coverage?

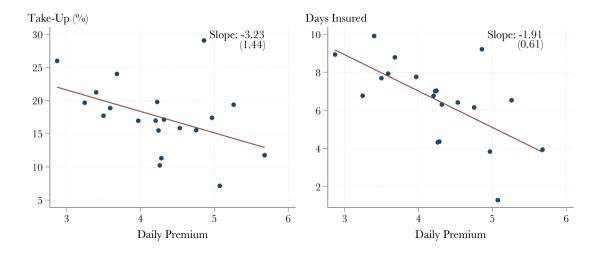

Define two measures of insurance coverage, y_i , separately for coverage through the experiment and from any insurer:

- 1. Take-up
- 2. Days with coverage

Run ITT regression:

 $y_i = \alpha + \beta \mathbb{1}\{PAYG_i\} + \epsilon_i$

ITT: Take-up and Coverage Effects of Daily Contract


Q2: How sensitive is demand to price?

• Isolate randomly induced variation:

$$y_i = \beta_0 + \underbrace{\beta_1 p_{induced_i}}_{\text{Isolates induced price variation}} + \underbrace{\beta_2 p_{base_i}}_{\text{Controls for risk premium}} + \varepsilon_i$$

- Estimate elasticity of demand with same logic
- In both cases, limit these regressions to those offered pay-as-you-go contract

Q2. Demand is Relatively Price Inelastic

Q2. Demand is Relatively Price Inelastic

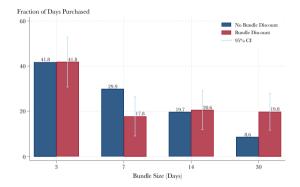
- Elasticity of demand for days of coverage = -0.63
 - \rightarrow Higher for days purchased conditional on enrollment: **-0.72**
 - \rightarrow 10% increase in price reduces take-up by **-1.3pp** (7% of 17.6% take-up rate)

- Estimates are less elastic than other estimates of demand for auto insurance
 - $ightarrow\,$ e.g., (Barone and Bella, 2004): Average $arepsilon_D$ across market segments = -1.1
 - \rightarrow Could reflect the inaccessibility of alternative insurance contracts

Q3: Is there demand for smaller quantities at higher prices?

- Forgoing the bundle discount to buy fewer days reveals an implied cost of borrowing
 - $\rightarrow~$ Size of discounts were designed so refusing implies an APR \approx payday loan

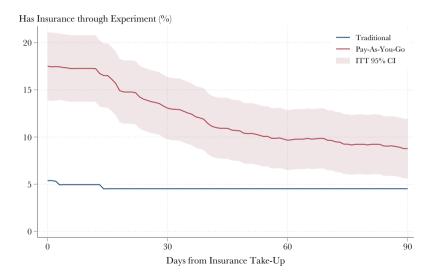
Q3: Is there demand for smaller quantities at higher prices?


- Forgoing the bundle discount to buy fewer days reveals an implied cost of borrowing
 - $\rightarrow~$ Size of discounts were designed so refusing implies an APR \approx payday loan

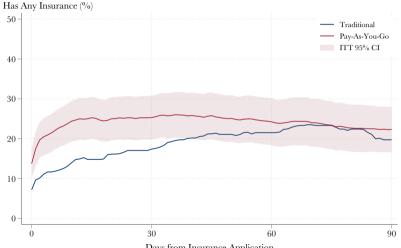
	Days Purchased			
	3	7	14	30
APR Implied by Forgoing 14-Day Bundle (%)	498	1,409	0	0
APR Implied by Forgoing 30-Day Bundle (%)	261	378	514	0

Q3: Demand for Smaller Quantities at Higher Prices

- Without discount, 72% of days are purchased in small quantities
 - → Days purchased via bundle increase by 12pp (43%) when offered discount
- Even with discount, 51% of drivers always opt for small quantities at higher prices and 77% do so at least once


Why is there demand for smaller quantities at higher prices?

Corroborating evidence for liquidity constraints:


- 81% of applicants have \$0 of available credit on their credit report
- **19%** of drivers have \geq 1 attempted purchase rejected for insufficient funds
 - ightarrow ~26% drop insurance coverage after an attempted purchase is rejected
 - ightarrow ~ 5% of all attrition occurs after insufficient funds bounce
- Drivers 43% more likely to make a purchase on a Friday

Q4: Do coverage increases persist (within-experiment)?

Q4: Do coverage increases persist (within-experiment)?

Q4: Do coverage increases persist (any insurer)?

Days from Insurance Application

Contextualizing Attrition

- RCT may understate the potential of "pay-as-you-go" for several reasons
 - \rightarrow Product was early stage (SMS, website) and clunky (now there's an app)
 - \rightarrow Prices were high (max mark-up is now 20%, down from 67%)
 - ightarrow Product bundled "pause" and financing features, expensive for frequent drivers
 - \rightarrow Some drivers may "graduate" to full coverage (1 in 3 report this as reason)

Contextualizing Attrition

- RCT may understate the potential of "pay-as-you-go" for several reasons
 - \rightarrow Product was early stage (SMS, website) and clunky (now there's an app)
 - \rightarrow Prices were high (max mark-up is now 20%, down from 67%)
 - ightarrow Product bundled "pause" and financing features, expensive for frequent drivers
 - \rightarrow Some drivers may "graduate" to full coverage (1 in 3 report this as reason)
- Widespread attrition in traditional plans
 - \rightarrow One Exec: "Nonstandard customers typically lapse on their policy within the first three months and re-enroll within 30 days" (Walls, 2015)
 - ightarrow Of 3,723 minimum liability insurance plans originated in 2021, 35% churned within 65 days

Taking Stock

1. Pay-as-you-go increases coverage relative to traditional contract

Taking Stock

- 1. Pay-as-you-go increases coverage relative to traditional contract
- 2. Demand for pay-as-you-go insurance is relatively price inelastic ($\epsilon_D = -0.6$)

Taking Stock

- 1. Pay-as-you-go increases coverage relative to traditional contract
- 2. Demand for pay-as-you-go insurance is relatively price inelastic ($\epsilon_D = -0.6$)
- 3. Drivers prefer small quantities, even at higher prices (in part due to liquidity constraints)

Concluding implications for pay-as-you-go

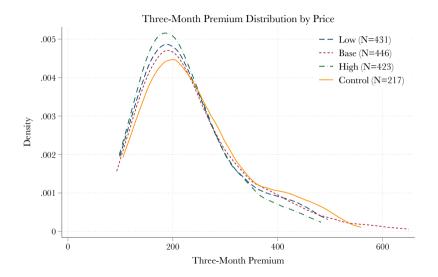
- Pay-as-you-go successfully alleviates binding constraints by breaking connection between financing and insurance (Rampini and Viswanathan, 2022)
 - ightarrow More beneficial for drivers without prior coverage history (Heterogeneity)

Concluding implications for pay-as-you-go

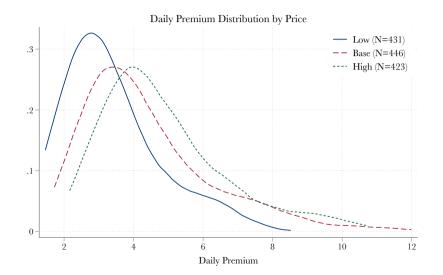
- Pay-as-you-go successfully alleviates binding constraints by breaking connection between financing and insurance (Rampini and Viswanathan, 2022)
 - ightarrow More beneficial for drivers without prior coverage history (Heterogeneity)
- Retiming purchases from today to the future ⇒ continued coverage is contingent on avoiding income/expense shocks (similar to Dobbie and Song, 2020)
 - ightarrow Coverage increases erode if auto insurance falls below other consumption priorities
 - ightarrow Drivers could nevertheless be better off with option to attrit and re-enroll without high fees

Concluding implications for the "uninsured driver problem"

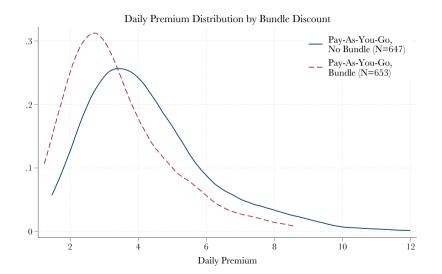
- Uninsured driving is difficult problem to solve
 - ightarrow Policymakers have imperfect tools (lowering minimum coverage limits, steeper penalties)
 - WTP for Medicaid < cost of coverage, so we subsidize (Finkelstein, Hendren, and Shepard, 2019), which is more effective than mandating (Frean, Gruber, and Sommers, 2017)
 - ightarrow From insurer's perspective, providing minimum coverage is expensive
 - Cost of acquiring a customer is high, attrition is high


Concluding implications for the "uninsured driver problem"

- Uninsured driving is difficult problem to solve
 - ightarrow Policymakers have imperfect tools (lowering minimum coverage limits, steeper penalties)
 - WTP for Medicaid < cost of coverage, so we subsidize (Finkelstein, Hendren, and Shepard, 2019), which is more effective than mandating (Frean, Gruber, and Sommers, 2017)
 - ightarrow From insurer's perspective, providing minimum coverage is expensive
 - Cost of acquiring a customer is high, attrition is high
- Technology has exciting potential to automate processes and reduce admin costs!
- Pay-as-you-go contracts can help particularly liquidity constrained, infrequent drivers
 - → Encourage financial product innovation in markets where consumption is below optimal levels to harness the "liquidity flypaper effect" (Di Maggio, Katz, and Williams, 2022)


Thanks!

Appreciate any/all feedback: rkluender@hbs.edu


Visualizing Treatments: Price

Visualizing Treatments: Price

Visualizing Treatments: Quantity Discounts

Inferring Lower Bound on Cost of Credit

Implied APR =
$$\frac{\text{Forgone discount ("interest")}}{\text{Borrowing required to access bundle ("principal")}} * (\frac{365}{T})$$

- Ex: Assume \$5/day, purchase 30 days for \$120 (\$4/day) or 7 days for \$35 (\$5/day)
 - \rightarrow Spend \$150 instead of \$120 to avoid borrowing \$85 (\$120 \$35)
 - \rightarrow Duration of "loan" is days to reach 23 insured days (23 days / utilization rate)
 - \rightarrow Drivers use their insurance on 67.5% of days \implies T = 34 days

mplied APR =
$$\frac{\$30}{\$85} * (\frac{365}{34}) = 378.3\%$$

Interaction with No Regular Policy History

	Take-Up	Days with Coverage	Days Insured	Insured End of Study
	(1)	(2)	(3)	(4)
Pay-As-You-Go=1	6.43	3.15	-2.17	-2.59
	(4.20)	(5.42)	(3.33)	(4.71)
	[0.125]	[0.562]	[0.514]	[0.581]
No Regular Policy	-7.24	-12.56	-6.08	-11.19
History=1	(4.00)	(5.44)	(3.42)	(4.93)
	[0.070]	[0.021]	[0.076]	[0.023]
Pay-As-You-Go=1 ×	8.24	10.95	6.47	10.35
No Regular Policy	(4.60)	(6.02)	(3.58)	(5.33)
History=1	[0.074]	[0.069]	[0.071]	[0.052]
Constant	10.45	20.90	8.45	25.17
	(3.74)	(4.97)	(3.21)	(4.39)
	[0.005]	[0.000]	[0.009]	[0.000]
Ν	1,537			
No Regular Policy History	70.2			