The Impact of Social Insurance on Household Debt

Gideon BornsteinSasha IndarteWharton, UPennWharton, UPenn

December 2022

Disclosure Statement

• We gratefully acknowledge financial support for this project from the Rodney L. White Center for Financial Research

• Both coauthors have nothing else to disclose

Motivation: Social Insurance and Consumer Credit Markets

- Unsecured debt (e.g., credit cards) is an important consumption-smoothing tool
 - Of the 4 in 10 US adults anticipating difficulty meeting an unexpected \$400 expense, credit cards are the most cited tool they expect to rely on (SHED, 2019)
 - 43% of US households experiencing an income shortfall report turning to borrowing, including credit cards (SCF, 2016)
- Lack of insurance can \uparrow household reliance on debt to cope with adverse shocks
 - Expanding social insurance can crowd out this use of debt
- But improved financial resilience from better insurance can crowd in credit supply

1. Background: Credit Cards and Medicaid

2. Estimating the Impact of Medicaid on Credit Outcomes

3. A Model with Health Insurance and Unsecured Debt

4. Conclusion

Background: Credit Cards and Medicaid

Credit Card Debt Along the Income Distribution

Source: 2017 PSID

Bornstein and Indarte

Med. Collections

Background: Medicaid Expansions

- Medicaid: gov't program providing health insurance to low-income households
- 64.7 million Americans received health insurance through Medicaid in 2019
- ACA provided federal funds for state expansions of Medicaid eligibility in 2014
 - But 2012 NFIB v. Sebelius Supreme Court ruling made expansions optional

Background: Medicaid Expansions

- Medicaid: gov't program providing health insurance to low-income households
- 64.7 million Americans received health insurance through Medicaid in 2019
- ACA provided federal funds for state expansions of Medicaid eligibility in 2014
 - But 2012 NFIB v. Sebelius Supreme Court ruling made expansions optional
- Staggered expansion across states ensued:

Variation in Impact of Medicaid Expansions

- Expanding under ACA \uparrow Medicaid income limit to 138% of the federal poverty level
- Impact on eligibility depends on (1) pre-ACA income limit & (2) income distribution

Variation in Impact of Medicaid Expansions

- Expanding under ACA \uparrow Medicaid income limit to 138% of the federal poverty level
- Impact on eligibility depends on (1) pre-ACA income limit & (2) income distribution

Variation in Impact of Medicaid Expansions

- Expanding under ACA \uparrow Medicaid income limit to 138% of the federal poverty level
- Impact on eligibility depends on (1) pre-ACA income limit & (2) income distribution

Estimating the Impact of Medicaid on Credit Outcomes

- Experian Data: detailed credit outcomes
 - Annual panel of 10 million US residents spanning 2010-2021
 - Have revolving balances quarterly 2012-2020
 - Geographically representative

- ZIP-Level Medicaid Eligibility
 - ► IRS SOI data: distribution of income at the ZIP-level
 - ACS data: joint distribution of household size and income
 - Combine data to estimate ZIP-level eligibility

Estimating the Causal Effect of Medicaid Eligibility

- Goal: estimate the causal effect of expanded Medicaid eligibility on credit outcomes
 - Outcomes: borrowing, credit supply & demand proxies, default, and credit scores
- Challenges:
 - Medicaid eligibility is negatively correlated with income
 - ► Later state-level expansions coincided with other political changes (e.g., new gov't)
- Approach: continuous diff-in-diff comparing ZIP codes
 - ► Idea: compare ZIP codes with similar income but different-sized Medicaid expansions
 - Similar to Goodman-Bacon (2018, 2021), but using ZIP vs. state-level variation
- **Identifying Assumption:** change in eligibility is uncorrelated with other shocks coinciding with expansion

Results: Eligibility \rightarrow Borrowing

	1[Has CC]	log(CC Bal.)	log(CC Rev. Bal.)	
$NewElig_{zs} \times Post_{st}$	0.327*** (0.05)	0.999*** (0.24)	0.742*** (0.21)	
NewElig _{zs}	-0.493*** (0.08)	-1.337*** (0.28)	-1.108*** (0.25)	
log(AGI _{zcst})	0.110*** (0.01)	0.629*** (0.02)	0.560*** (0.02)	
Obs	106,616	352,537	352,533	
R2	0.781	0.855	0.819	
Mean	84%	\$4,239	\$3,628	

Notes: All specifications include, year, state, county, state-year, and county-year fixed effects. Standard errors are

clustered by state. Significance: 0.10*, 0.05**, 0.01***.

Dynamic Inc. Interaction Est. Hetero. Alt. Approaches

Results: Eligibility \rightarrow Borrowing

	1[Has CC]	log(CC Bal.)	log(CC Rev. Bal.)	BJS Est.
$NewElig_{zs} \times Post_{st}$	0.327*** (0.05)	0.999*** (0.24)	0.742*** (0.21)	0.869
NewElig _{zs}	-0.493*** (0.08)	-1.337*** (0.28)	-1.108*** (0.25)	
log(AGI _{zcst})	0.110*** (0.01)	0.629*** (0.02)	0.560*** (0.02)	
Obs	106,616	352,537	352,533	
R2	0.781	0.855	0.819	
Mean	84%	\$4,239	\$3,628	

BJS: Modified Borusyak, Jaravel, and Spiess (2022) heterogeneity-robust estimator

Notes: All specifications include, year, state, county, state-year, and county-year fixed effects. Standard errors are

clustered by state. Significance: 0.10*, 0.05**, 0.01***.

Dynamic Inc. Interaction Est. Hetero. Alt. Approaches

Summary of Additional Resuls

• Credit Supply & Demand Proxies:

- Credit card utilization decreases
- Credit limits increase
- New credit cards per inquiry increase
- Credit card inquiries increase

• Default & Credit Risk:

- 30 and 90 day delinquency decrease
- Likelihood and amount of debt in collections decrease
- Credit scores increase

A Model with Health Insurance and Unsecured Debt

Households

Income shocks

• Income:

$$\ln y_{it} = \begin{cases} \rho \ln y_{it-1} + \epsilon_{it}^{y}, & \text{w.p. } \lambda_{y} \\ \ln y_{it-1}, & \text{w.p. } 1 - \lambda_{y} \end{cases}$$

Expenditure shocks

- Medical expenditure:
- Insurance by income:

$$X_{it} \sim \ln \mathcal{N}(\mu_x, \sigma_x^2)$$

 $M_{it} = oop (y_{it}) X_{it}$

Debt

- Borrow (or save) using one-period debt securities: b_{it}
 - Can choose to go delinquent on debt (suffer utility cost)
 - ▶ Pay endogenous interest rate $r(y_{it}, b_{it+1}) = \frac{1}{q(y_{it}, b_{it+1})}$

Delinquency and Credit Supply

Households with delinquent debt:

- Cannot save or borrow
- Medical expenditure piles up on debt
- With some probability, stochastic fraction of debt is forgiven

Credit supply

- Perfect competition among lenders
- Hybrid of short-term and long-term debt

Calibration

Medical Expenditure Panel Survey

- Distribution of medical expenditure
- Joint distribution of insurance type and income
- Out-of-pocket (OOP) expenses by insurance type

Panel Study of Income Dynamics

Credit card debt (% of median income)

• Experiment: \uparrow Medicaid coverage 1.6 pps

Medicaid Expansion Impact

- Experiment: \uparrow Medicaid coverage 1.6 pps
- Decompose borrowing and welfare response into three channels:

Medicaid Expansion Impact

- Experiment: \uparrow Medicaid coverage 1.6 pps
- Decompose **borrowing** and **welfare** response into three channels:
 - ▶ Direct insurance channel: increases wealth in some states of the world ⇒ less debt

Medicaid Expa	Medicaid Expansion Impact		
Debt Level	+1.33%	-1.14%	
14/- I <i>F</i>	10.499/	10.45%	
Welfare	+0.18%	+0.15%	

- Experiment: \uparrow Medicaid coverage 1.6 pps
- Decompose **borrowing** and **welfare** response into three channels:
 - ▶ **Direct insurance channel**: increases wealth in some states of the world ⇒ **less debt**
 - ► Credit demand channel: precautionary savings and debt aversion ⇒ ambiguous

Medicaid Expansion Impact		Direct Effect	CD	
Debt Level	+1.33%	-1.14%	-1.43%	
Welfare	+0.18%	+0.15%	+0.0001%	

- Experiment: \uparrow Medicaid coverage 1.6 pps
- Decompose **borrowing** and **welfare** response into three channels:
 - ▶ Direct insurance channel: increases wealth in some states of the world ⇒ less debt
 - ► Credit demand channel: precautionary savings and debt aversion ⇒ ambiguous
 - ► Credit supply channel: lower delinquency risk ⇒ better credit terms ⇒ more debt

Medicaid Exp	ansion Impact	Direct Effect	CD	CS
Debt Level	+1.33%	-1.14%	-1.43%	+3.90%
Welfare	+0.18%	+0.15%	+0.0001%	+0.03%

- Experiment: \uparrow Medicaid coverage 1.6 pps and finance it with a uniform income tax
- Decompose **borrowing** and **welfare** response into three channels:
 - Direct insurance channel: increases wealth in some states of the world \Rightarrow less debt
 - ► Credit demand channel: precautionary savings and debt aversion ⇒ ambiguous
 - ► Credit supply channel: lower delinquency risk ⇒ better credit terms ⇒ more debt

Medicaid Expansion Impact		Direct Effect	CD	CS
Debt Level	+1.33%	-1.14%	-1.43%	+3.90%
(incl. tax effects)	+1.63%	-1.00%	-1.25%	+3.88%
Welfare	+0.18%	+0.15%	+0.0001%	+0.03%
(incl. tax effects)	+0.09%	+0.06%	+0.0001%	+0.03%

Conclusion

Conclusion

Q: How does social insurance affect household debt?

- We focus on expansion of health insurance through Medicaid
- Empirical evidence implies
 - ▶ 1% increase in Medicaid eligibility → 0.74% increase in credit card debt
- Quantitative model
 - Credit supply channel drives the rise in debt
 - Credit supply response leads to first order welfare gains (1/3 of total)

Social insurance can crowd in private insurance (credit access) with large welfare gains

Thanks!

Appendix

Credit Card Debt in the US

- US households held \$927 bil. in credit card balances in 2019
- Avg. credit card balances are \$4,239
 - Avg. revolving (unpaid) balances: \$3,628
 - ▶ 61% of US residents are revolvers
- Commercial banks earned \$90 bil. in CC interest income in 2019 (\$700 per HH)
- The average credit card interest rate is 14%

Source: 2016 SCF

Credit card debt versus income across age groups

Share of Debt Service Payments (2018)

New Credit Cards to Inquiries (ZIP-level)

New Credit Cards to Inquiries

Credit Card Inquiries (ZIP-level)

Non-Medical Debt in Collection (ZIP-level)

% with Non-Medical Debt in Collection

Back

Medical Debt in Collection (ZIP-level)

% with Medical Debt in Collection

Empirical Strategy: Continuous Diff-in-Diff

• Idea: compare ZIP-level outcomes before/after expansion in ZIPs with different changes in eligibility. Estimate:

 $Y_{zcst} = \alpha_1 \text{Post}_{st} + \alpha_2 \Delta \text{Elig}_{zs} + \beta (\text{Post}_{st} \times \Delta \text{Elig}_{zs}) + \varphi_{st} + \varphi_{ct} + X_{zcst} + \varepsilon_{zcst}$

where Y_{zcst} is an outcome in ZIP *z*, of county *c* in state *s* in year *t* and $\triangle Elig_{zs}$ is the change in eligibility in ZIP *z* in the year before vs. after state *s*'s expansion

- Outcomes: credit scores, borrowing, credit supply & demand proxies, default
- **Identifying Assumption:** change in eligibility is uncorrelated with other shocks coinciding with expansion

State-Level Analysis: Econometric Approach

• How does health insurance affect credit card debt?

 $ln(cc_{s,t}) = Insured_{s,t}\beta + X_{s,t}\gamma + \theta_s + \tau_t + \varepsilon_{s,t}$

- cc_{s,t} = credit card debt per capita in state s at time t
- Insured_{s,t} = % pop. w/ health insurance in s at time t
- $X_{s,t}$ = state-level controls
- Instrument for insured rate using indicator for adopting Medicaid expansion
 - Expect negative OLS bias: cc debt is countercyclical, insurance coverage procyclical
 - ► Identifies the causal effect when expansion only affects cc debt through insurance

Uninsured rates fell after Medicaid expansion

Drivers of Variation in Change in Eligibility

- Expanding under ACA \uparrow Medicaid income limit to 138% of the federal poverty level
- Impact on eligibility depends on (1) pre-ACA income limit & (2) income distribution

Back

Drivers of Variation in Change in Eligibility

- Expanding under ACA \uparrow Medicaid income limit to 138% of the federal poverty level
- Impact on eligibility depends on (1) pre-ACA income limit & (2) income distribution

Drivers of Variation in Change in Eligibility

- Expanding under ACA \uparrow Medicaid income limit to 138% of the federal poverty level
- Impact on eligibility depends on (1) pre-ACA income limit & (2) income distribution

$ln(cc_{s,t}) = Insured_{s,t}\beta + X_{s,t}\gamma + \theta_{s} + \tau_t + \varepsilon_{s,t}$
$\mathbb{1}[Adopted]_{s,t} \xrightarrow{IV} Insured_{s,t}$

			-	
	(1)	(2)	(3)	(4)
Insured _{s.t}	1.34**	1.41***	0.01	0.06
-,-	(0.43)	(0.35)	(0.11)	(0.09)
	First	Stage		
1[Adopted] _{s.t}	1.44***	1.56***		
	(0.19)	(0.19)		
Controls		\checkmark		\checkmark
Stage 1 F	55.7	65.8		
Obs.	765	765	765	765

TSI S

Notes: Each regression includes state and year fixed effects and robust standard errors. Control variables include the unemployment rate, log(population), log(house prices), house price growth, and state-level GDP growth. Statistical significance: 5%*, 1%**, and 0.1%***. • CC Debt Share

OLS

4 Go Back

	TS (1)	LS (2)	0 (3)	LS (4)	$ln(cc_{s,t}) = Insured_{s,t}\beta + X_{s,t}\gamma + \theta_s + \tau_t + \varepsilon_{s,t}$
Insured _{s,t}	1.34** (0.43)	1.41*** (0.35)	0.01 (0.11)	0.06 (0.09)	$\mathbb{1}[Adopted]_{s,t} \xrightarrow{IV} Insured_{s,t}$
1[Adopted] _{s,t}	First : 1.44*** (0.19)	Stage 1.56*** (0.19)			
Controls Stage 1 F Obs.	55.7 765	√ 65.8 765	765	√ 765	Expanding Medicaid → ↑ cc debt 2.2% → ↑ \$20.4 bil

Notes: Each regression includes state and year fixed effects and robust standard errors. Control variables include the unemployment rate, log(population), log(house prices), house price growth, and state-level GDP growth. Statistical significance: 5%*, 1%**, and 0.1%***. • CC Debt Share

Strategy #2: Treatment Intensity Across Counties

Go Back

- Expansion of Medicaid → change in eligibility criteria
- Can calculate eligibility at a granular level using data on the distribution of income
 - And data on the joint distribution of income and household size
- **Continuous Treatment DID**: compare county level debt-to-income before/after expansion in counties with different impact on **eligibility**
- **Regression result:** 1 p.p. \uparrow in eligibility \rightarrow 0.8 p.p. \uparrow in debt-to-income (3.6% \uparrow in debt)

Utility	Income Process	Haircut Process
$\beta = 0.92$ $\gamma = 3$ $\xi = 0.35$ $r_{f} = 2\%$	$\lambda_y = 0.42$ $ ho_y = 0.88$ $\sigma_y = 0.07$	$\lambda_d = 0.94$ $eta_1^d = 1.7$ $eta_2^d = 9$
Medical Shocks	Insurance	Out of Pocket
$\mu_e = 0.08$ $\sigma_e = 1.6$	$P_m = 0.1 - 0.15 \ln y$ $P_i = 0.78 + 0.21 \ln y$ $P_u = 1 - P_m - P_i$	$OOP = P_m O_m + P_i O_i + P_u O_u$ $O_m = 7\%$ $O_i = 27\%$ $O_u = 63\%$

back

Distribution of expenditure shocks

- Median expenditure shock = 8% annual income
- 1 s.d. above median = 40% annual income

Out-of-pocket expenditure by income

 $oop(y) = P(MedC|y) \times 6.8\% + P(OthIns|y) \times 27.5\% + P(NoIns|y) \times 62.7\%$

Medical expenditure distribution by income

back