How Does Unemployment Insurance Affect Consumer Spending?

Peter Ganong and Pascal Noel

UChicago Harris, Harvard

December 15, 2016

How Does Unemployment Insurance Affect Consumer Spending?

• Data: Chase bank accounts with direct deposit of UI benefits

- Empirics: Estimate path of spending for UI recipients. Why?
- Models
 - Inconsistent with canonical buffer stock model
 - Estimate alternative behavioral models [Gabaix 16, Campbell-Mankiw 89]

• Consumption-smoothing gains from UI

• Checking accounts - transaction type aggregated by month

• Oct 2012 through May 2015

- 210,000 UI recipients
- Concern: 28% of households have checking accounts at multiple banks [Consumer Financial Life Survey 14]
 - Sum over family's linked accounts
 - Select families that do most of their banking with Chase
 - Restriction: ≥ 5 monthly outflows

Data: Building Spending From Outflows

Checking Account Outflows [Median \$3520]

	Sample	Bank	Benchmark	Source
Pretax Fam Inc *	Prior to UI Receipt	\$4,580	\$5,080	SIPP Figure
Age §	Prior to UI Receipt	44	41	SIPP Figure
Ckg Balance *	Employed	\$1,460	\$1,500	SCF Figure
Spending §	Selected Categories	\$1,799	\$1,912	CEX Table
Geography	All	23 states	50 states	Chase Map
* median, § mean				

Why Does Spending Drop? Low Current Income

Exhaustion: State-Level Comparison: Spending

Exhaustion: Is Consumption Really Dropping?

	Pre-Exhaust	Post-Exhaust	$\Delta\%$
Large % Drop			
Drug Stores	\$38	\$31	-18%
Medical Copay	\$28	\$24	-14%
Food At Home	\$289	\$253	-13%
Entertainment	\$25	\$22	-11%

Small % Change

Exhaustion: Is Consumption Really Dropping?

	Pre-Exhaust	Post-Exhaust	$\Delta\%$
Large % Drop			
Drug Stores	\$38	\$31	-18%
Medical Copay	\$28	\$24	-14%
Food At Home	\$289	\$253	-13%
Entertainment	\$25	\$22	-11%
Small % Change			
Auto Loan	\$76	\$71	-7%
Mortgage	\$148	\$142	-4%
Insurance	\$141	\$138	-2%
Any Credit Bureau Delinquency	18%	19%	

Five Close Cousins Do Not Predict Drop At Exhaustion

$$heta = rg \min_{ ilde{ heta}} \sum_t (c_t - \hat{c}_t(ilde{ heta}))^2$$

- Estimate discount factor and risk aversion <a>Slide
- Alternative borrowing technology
 - Credit card borrowing Figure
- Alternative time preferences

 - Naive present-bias [Laibson 97]

 Figure

Sparse model [Gabaix 16]

Spender-Saver [Campbell-Mankiw 89]

	Gain Relative to a 1% Increase in Life-		
time Income			
Model	UI Level $\uparrow 1.6\%$	UI Dur ↑1 Mo	Ratio $(2)/(1)$
Buffer stock	0.044%	0.122%	2.78
Spender-saver	0.054%	0.202%	3.72
Sparsity	0.071%	0.205%	2.89

- Question: How to teach people to prepare for bad events?
- Failure to prepare creates possible opportunities for welfare improvement
 - This paper: Spend as if they don't expect exhaustion to happen
 - CFPB: Payday lending rule
 - Borrowers expect to repay sooner than they do [Bertrand and Morse 2011, Mann 2013]

Monthly spending tracks UI benefits

- Onset: MPC of 43 cents
- Exhaustion: Spending drops 11%

- Consequences of the drop at exhaustion
 - Reject rational model
 - Consistent with sparsity and spender-saver
 - Consumption-smoothing gains of *extending* UI benefits >> *raising* UI benefits

Must believe job-finding rate is 74% [Spinnewijn 15]

Need to believe job-finding rate is 74% [Spinnewijn 15]

$$\theta = \begin{cases} \beta & \text{discount factor} \\ \gamma & \text{risk aversion} \end{cases}$$

$$heta = rg \min_{ ilde{ heta}} \sum_t (c_t - \hat{c}_t(ilde{ heta}))^2$$

Other Models

- Durables Commitments
 - Model: Mortgage default should raise nondurables spending
 - Data: Spending *falls* at exhaustion
- Rational inattention Assets
 - Model:
 - Agents with most at stake are most rational (low-asset group and low-income group)
 - smaller drop for these groups
 - Data: *larger* drop for these groups
- Illiquid asset with transaction cost
 - Kaplan and Violante 14 estimate a \$1,000 cost
 - Two-year loss from unemployment is mean \$10,000 \Rightarrow agent should liquidate to smooth consumption
 - Complicating factor: dynamic uncertainty from unemployment

Model: Permanent Income Consumer

Model: Credit Card Borrowing

Models with persistent over-optimism

- Heterogeneous impatience [Krusell and Smith 98, Carroll, Slacalek, Tokuoka and White 15, Parker 15, Auclert 16]
- Three types. Impatient type has $\delta = 0.9$ and no assets.

$$\hat{c}_t(\theta) = w_1 c_t^{\text{impatient}} + w_2 c_t^{\text{perm inc}} + (1 - w_1 - w_2) c_t^{\text{buffer-stock}}$$

 $\theta = \arg \min_{\tilde{\theta}} \sum_t (c_t - \hat{c}_t(\tilde{\theta}))^2$

Heterogeneous impatience slide - 0.9

$$\max_{\{c_t\}} E \sum_{n=0}^{T-t} \beta \delta^n u(c_{t+n})$$

• To build intuition, show spending with $\beta=$ 0.8 and $\beta=$ 0.6

• Estimate β which best fits data

Quantitative Evaluation of Models]

What Models Can Fit Path of Spending? (Worst to Best)

$$\mathsf{Fit} = \sum_t (c_t - \hat{c}_t(heta))^2$$

			-
Model	Comment	# Params	Fit
Permanent income	Spending drops	0	1.00
Baseline	Should cut spending before benefit exhaust	0	0.22
Borrow on credit	Spending drop too large at benefit exhaust	0	0.11
Sparse agent	Act as if income loss at exhaust is 71% as	1	0.09
	big as true loss		
Estimate params	Spending drop too large at benefit exhaust	2	0.08
Heterogeneous	Even highly impatient (e.g. δ = 0.9) cut	2	0.06
impatience	before exhaustion		
Sparse agent, esti-	Act as if income loss at exhaust is 71% as	2	0.03
mate δ	big as true loss		
Spender-saver	25% of agents hand-to-mouth	2	0.03
Over-optimism	68% job-finding rate in exhaust month	2	0.01 2

Concern	Spec Change	Plot
Changes That Don't Matter		
Duration Dependence	$\{e_6, e_7, \ldots\}: 0.25 \to 0.15$	► Figure
Spending Mismeasured	Spending = All Outflows	► Figure
Consumption Commitments	$\gamma: 2 ightarrow 4$	► Figure
Changes That Matter		
Alternative Asset Values	$a_0 = \{0, 12\}$	► Figure
Alternative Discount Factor	$eta=\{ extbf{0.98}, extbf{1}\}$	• Figure

	Liquid Asset Holdings
Data: Survey of Consumer Finances	0.7 months
Model: Match drop through exhaustion	0.8 months
Model: Steady state a	2.4 months
Gournichas and Parker (02)	$\sim \!\! 12 months$

- Fact: UI surprisingly important for consumption
 - Increase UI to help families smooth
 - Increase UI for macro stabilization

- Fact: People who cut spending more find a job faster. Some people won't search until benefits are exhausted.
 - Decrease UI

- Fact: Spending drops sharply at benefit exhaustion
 - Policy: Help families prepare for exhaustion

- Fact: People who cut spending more find a job faster. Some people won't search until benefits are exhausted.
 - Policy: Encourage "worrying" early on to motivate job search

- Fact: Spending very sensitive to income
 - Policy: Encourage larger buffers. Dedicated accounts?
Empirics. Onset. Family Income Recovers Quickly

Labor and Gov Transfers -- UI Receipt Beginning in Month 0

Empirics. Onset. Concept Differences Explain Quick Income Recovery

Jacobson, LaLonde and Sullivan (93) report a 30% permanent income loss for displaced workers. Why?

• See also Couch and Placzek (10), von Wachter, Sullivan and Manchester (09), Davis and von Wachter (11), Jarosch (15), Flaaen et al. (15)

Sources:

- Gov't transfers
 - Recovery of family labor income matches SIPP Figure
- Family income vs individual income
- 3 All UI recipients vs high-tenure JLS Figure Back

Empirics. Why Drop at Onset? Work-Related Expenses

Steps

Identify expenditure categories containing work expenses cwork

• Method: drop at retirement for people with enough assets to smooth

Aguiar and Hurst (13)	$\Delta c > median$ at retirement	
Food Away From Home	Food Away From Home	
Transportation	Fuel, Auto, Flights/Hotels	
Clothing	Department Stores	
	Small Durables, Online	
31% of nondurables	29-41% of nondurables	

Estimate impact of change in employment status • Details

$$E(c_{work}(y,e=1)) - E(c_{work}(y,e=0))$$

Spending At Onset By Expenditure Category

Empirics. Onset. Work-Related Expenses pprox 1/3

Spending Change at Reemployment

Families Smooth Income Loss Over Several Months

Focus on families that get UI for exactly three months

- Prior work overstated spending drop during unemployment Figure
- Spending recovers slowest for low-asset families Figure

Bank UI Families Have Incomes Similar to SIPP

Representativeness by Age

Representativeness by Labor Income Before and After Separation

	Before Sep	Drop at Sep	Source
External Benchmark			
(1) Labor Share of Total	85%	52%	Rothstein and Valetta (14)
(2) Use Payroll DD	80%	80%	SCF
(3) = (2) * (1)	68%	42%	
Bank	69%	38%	

Assets External Benchmark

Medians: SCF Employed \$1,500, Bank Employed \$1,520, Bank UI \$1,060 Back

Chase Branch Footprint

Monthly Spending Compared to External Benchmarks

Category	Bank	Ratio to CEX	Ratio to BEA
Food At Home	478	1.44	0.82
Food Away From Home	291	1.33	0.62
Utilities	371	1.19	_
		Ratio to SCF	
Mortgage	1536	1.12	
Auto Loan	484	1.04	
Credit Card	1010	0.63	

External Benchmarks		Source
Weekly UI payments	2.9 million	FRED
Consumer Units	125 million	CEX
Consumer units getting UI	2.2%	-
UI recipients getting DD	45%	Natl Consumer Law Center
Consumer units getting UI DD	1.0%	-
Bank families getting UI DD	0.8%	

Control Group Nondurables Spending Rises \$7/month

46

Control Group Income Rises \$15/month

Calendar Adjustment for Income

Calendar Adjustment for Spending

Empirics: Introduction - Families Remaining Unemployed

Spending If Stay Unemployed

Equation for Spending Drop

$$\Delta c_t = \frac{1}{n} \sum_{i \in \mathsf{UI Duration } > t} c_{i,t} - c_{i,t-1}$$

Nonparametric spending series

Exhausted vs Did Not Exhaust

Labor Income in high vs low benefit states

Spending (long-term) in high vs low benefit states

Spending At Unemployment Onset

	Pre-Onset	Post-Onset	$\Delta\%$
	(t - 3)	(t-1)	
Cut a Lot			
Any Student Loan	12.4%	10.9%	-16%
Food Away From Home	\$185	\$164	-11%
Auto	\$181	\$162	-11%
Any Doctor Copay	24.6%	22.4%	-9%
Cut a Little			
Retail	\$358	\$337	-6%
Food At Home	\$300	\$291	-3%
Any Auto Loan Pay	17.0%	16.6%	-2%
Stable			
Utilities	\$164	\$163	-1%
Any Entertainment	43.7%	44.3%	1%
Any Mortgage Pay	15.0%	15.3%	2%

MPC Heterogeneity at Onset

UI Ben / Inc in Top Quint UI Ben / Inc in Bot Quint Total Assets in Top Quint Total Assets in Bot Quint Single Penalty Fees > \$5/month No Revolving CC Balance Has Chase Credit Card Debt / Income > Median Chase Assets in Top Quint Chase Assets in Bot Quint CC utilization > 50% Any Mortgage Payments Annual Income < Median Age < Median

Empirics. Onset. Mean Duration and Spending Drop

Borrowing on All Credit Cards

Herkenhoff, Phillips and Cohen-Cole 2016

Baseline Chars: Pre-Onset Medians By UI Duration

Duration	Income	Spending	Ckg Assets
1	2788	2236	949
2	2894	2239	1011
3	2811	2181	1051
4	2737	2164	983
5	2685	2147	997
6	2612	2110	982
Exhaust	2564	2112	1045

▶ Back

Onset: Heterogeneity By Duration

Labor Income By Benefit Duration

Onset: Heterogeneity By Duration

Spending By Benefit Duration

Onset: Heterogeneity By Total Liquid Assets

Income Event Study for Nonexhaustees

Onset: Heterogeneity By Total Liquid Assets

Spending Event Study for Nonexhaustees

Onset MPC By State

Spending: Long-Run Trends

Linked and Unlinked Accounts

• Most families with multiple checking accounts have linked their accounts together under a single primary customer

- About 10% of UI recipients have multiple accounts
 - Not linked
 - Matched by same last name and address
 - Could arise if two Chase customers got married, decided to keep separate accounts

- Plots
 - Onset: Income and Spending
 - Exhaustion: Income and Spending Back to Onset Back to Exhaustion

Linked and Unlinked Accounts - Income at Onset

Linked and Unlinked Accounts – Spending at Onset

Linked and Unlinked Accounts - Income at Exhaustion

Linked and Unlinked Accounts - Spending at Exhaustion

72

Income Recovery: Comparison to SIPP

Income Recovery: JLS Mass Layoff

FIGURE 2. EARNINGS LOSSES FOR SEPARATORS IN MASS-LAYOFF SAMPLE

Income Recovery: JLS All UI Recips

Empirics. Work-Related Expenses Details

 Methodology for estimating impact of change in employment status on spending in work-related categories

$$E(c_{work}(y, e = 1)) - E(c_{work}(y, e = 0)) =$$
$$E(c_{work}(y_{emp}, e = 1)) - E(c_{work}(y_{unemp}, e = 0))$$

Total drop in work categories

$$E(c_{work}(y_{UI Benefit}, e = 0)) - E(c_{work}(y_{UI Exhaust}, e = 0))$$

Drop in work categories due to lost income

- Estimate final term using two methods:
 - Drop in spending on work-related categories at benefit exhaustion

$$MPC_{exhaust}^{work}(y_{Emp} - y_{UI Benefit})$$

• Drop in spending on non-work-related categories at onset

$$MPC_{onset}^{nonwork}(y_{Emp} - y_{UI Benefit})$$

Annual Spending Data Miss Monthly Smoothing

Path of Income Similar By Asset Holdings

Income. Sample has Completed UI Duration of 3 Months.

Spending Recovers Slowly For Low Asset Types

Spending. Sample has Completed UI Duration of 3 Months.

Exhaustion: Robustness Checks for Internal Validity

Spending at Exhaustion: Sharp Inc Change

Single

UI Ben / Inc in Top Quint UI Ben / Inc in Bot Quint Total Assets in Top Quint Total Assets in Bot Quint

Penalty Fees > \$5/month No Revolving CC Balance Has Chase Credit Card

Exhaustion MPC By State

Exhaustion: Time Aggregation for Spending

Income Drops by \$1200 At Exhaustion

Income at Benefit Exhaustion \$2,500 \$2,000 Mean Amount (\$) \$1,500 --- UI Labor \$1,000 \$500 \$0 -5 10 Months Since Last UI Check

Exhaustion: Heterogeneity by Income Drop

Income Event Study for Exhaustees

Exhaustion: Heterogeneity by Income Drop

Spending Event Study for Exhaustees

Exhaustion: Heterogeneity by Liquid Assets

Income Event Study for Exhaustees

Exhaustion: Heterogeneity by Liquid Assets

Spending Event Study for Exhaustees

Exhaustion: Heterogeneity by State

Exhaustion: Heterogeneity by State

Details on Equivalent Variation Calculations

Fuchs-Schuendeln and Hassan (15) calculate z which solves

$$\underbrace{u(y+x+z)}_{MPC=1} + 11u(y+z) = 12 \underbrace{u(y+\frac{x}{12})}_{\text{perm income}}$$

for CRRA utility with $\gamma=$ 2. We calculate

$$\sum_{t=1}^{15} u(c_t^{PIH}) = \sum_{t=1}^{15} u(c_t^{data} + z)$$

$$\sum_{t=1}^{15} u(c_t^{hand-to-mouth}) = \sum_{t=1}^{15} u(c_t^{data} - z)$$

$$\sum_{t=1}^{15} u(c_t^{buffer-stock}) = \sum_{t=1}^{15} u(c_t^{data} + z)$$

using a 15-month horizon. For c_{data} , we assume that agent behaves optimally *after* date 7 and aggregate over all possible job-finding histories

Welfare Loss Under Different Models

Welfare Loss for Agent Choosing u(cdata) Under Different Models 0.05 Equivalent Variation (% of annual c) 0.00 -0.05

Gain over Loss from Loss from c=y Policy PIH Policy **Buffer Stock Policy**

-0.10

Distribution of Spending Changes

Distribution of Change in Spending at Benefit Exhaustion

Distribution of Spending Change at UI Exhaustion

Schmieder, von Wacther and Bender (15) Figure 6

Reemployment wages in German UI data

People Who Cut Spending Sooner Find a Job Faster – Heterogeneity

